Predicting subgroup treatment effects for a new study: Motivations, results and learnings from running a data challenge in a pharmaceutical corporation.

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pharmaceutical Statistics Pub Date : 2024-07-01 Epub Date: 2024-02-07 DOI:10.1002/pst.2368
Björn Bornkamp, Silvia Zaoli, Michela Azzarito, Ruvie Martin, Carsten Philipp Müller, Conor Moloney, Giulia Capestro, David Ohlssen, Mark Baillie
{"title":"Predicting subgroup treatment effects for a new study: Motivations, results and learnings from running a data challenge in a pharmaceutical corporation.","authors":"Björn Bornkamp, Silvia Zaoli, Michela Azzarito, Ruvie Martin, Carsten Philipp Müller, Conor Moloney, Giulia Capestro, David Ohlssen, Mark Baillie","doi":"10.1002/pst.2368","DOIUrl":null,"url":null,"abstract":"<p><p>We present the motivation, experience, and learnings from a data challenge conducted at a large pharmaceutical corporation on the topic of subgroup identification. The data challenge aimed at exploring approaches to subgroup identification for future clinical trials. To mimic a realistic setting, participants had access to 4 Phase III clinical trials to derive a subgroup and predict its treatment effect on a future study not accessible to challenge participants. A total of 30 teams registered for the challenge with around 100 participants, primarily from Biostatistics organization. We outline the motivation for running the challenge, the challenge rules, and logistics. Finally, we present the results of the challenge, the participant feedback as well as the learnings. We also present our view on the implications of the results on exploratory analyses related to treatment effect heterogeneity.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"495-510"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2368","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

We present the motivation, experience, and learnings from a data challenge conducted at a large pharmaceutical corporation on the topic of subgroup identification. The data challenge aimed at exploring approaches to subgroup identification for future clinical trials. To mimic a realistic setting, participants had access to 4 Phase III clinical trials to derive a subgroup and predict its treatment effect on a future study not accessible to challenge participants. A total of 30 teams registered for the challenge with around 100 participants, primarily from Biostatistics organization. We outline the motivation for running the challenge, the challenge rules, and logistics. Finally, we present the results of the challenge, the participant feedback as well as the learnings. We also present our view on the implications of the results on exploratory analyses related to treatment effect heterogeneity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测新研究的亚组治疗效果:在制药公司开展数据挑战的动机、结果和经验。
我们介绍了一家大型制药公司就亚组识别主题开展的数据挑战赛的动机、经验和教训。数据挑战旨在探索未来临床试验的亚组识别方法。为了模拟现实环境,参赛者可以访问 4 项 III 期临床试验,以得出一个亚组,并预测其对挑战者无法访问的未来研究的治疗效果。共有 30 个团队报名参加挑战赛,参赛者约 100 人,主要来自生物统计学组织。我们概述了举办挑战赛的动机、挑战赛规则和后勤工作。最后,我们介绍了挑战赛的结果、参赛者的反馈以及学习成果。我们还介绍了我们对与治疗效果异质性相关的探索性分析结果的影响的看法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
期刊最新文献
Beyond the Fragility Index. A Model-Based Trial Design With a Randomization Scheme Considering Pharmacokinetics Exposure for Dose Optimization in Oncology. Potential Bias Models With Bayesian Shrinkage Priors for Dynamic Borrowing of Multiple Historical Control Data. Subgroup Identification Based on Quantitative Objectives. A Bayesian Dynamic Model-Based Adaptive Design for Oncology Dose Optimization in Phase I/II Clinical Trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1