Gravitational Fields of Polyhedral Bodies with 3D Polynomial Density Contrast

IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Surveys in Geophysics Pub Date : 2024-02-07 DOI:10.1007/s10712-023-09822-8
M. G. D’Urso, D. Di Lieto
{"title":"Gravitational Fields of Polyhedral Bodies with 3D Polynomial Density Contrast","authors":"M. G. D’Urso,&nbsp;D. Di Lieto","doi":"10.1007/s10712-023-09822-8","DOIUrl":null,"url":null,"abstract":"<div><p>For polyhedral mass bodies having arbitrary shape and density distribution of polynomial type we present a tensorial approach to derive analytical expressions of the gravitational potential and gravity vector. They are evaluated at an arbitrary point by means of formulas, referred to a Cartesian reference frame having an arbitrary origin, that are shown to be singularity-free whatever is the position of the observation point with respect to the body. The solution is expressed as a sum of algebraic quantities depending solely upon the 3D coordinates of the polyhedron vertices and the coefficients of the polynomial density function. Hence, no recursive expression needs to be invoked as in the recent contribution by Ren et al. (Surv Geophys 41:695–722, 2020). Moreover, the tensorial formalism developed in the paper allows one to obtain more concise, coordinate-free expressions that can also be extended to address polynomial functions of greater order. The analytical expressions of the gravitational potential and gravity vector are numerically validated and compared with alternative methods retrieved from the literature.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 3","pages":"887 - 975"},"PeriodicalIF":4.9000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-023-09822-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surveys in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10712-023-09822-8","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

For polyhedral mass bodies having arbitrary shape and density distribution of polynomial type we present a tensorial approach to derive analytical expressions of the gravitational potential and gravity vector. They are evaluated at an arbitrary point by means of formulas, referred to a Cartesian reference frame having an arbitrary origin, that are shown to be singularity-free whatever is the position of the observation point with respect to the body. The solution is expressed as a sum of algebraic quantities depending solely upon the 3D coordinates of the polyhedron vertices and the coefficients of the polynomial density function. Hence, no recursive expression needs to be invoked as in the recent contribution by Ren et al. (Surv Geophys 41:695–722, 2020). Moreover, the tensorial formalism developed in the paper allows one to obtain more concise, coordinate-free expressions that can also be extended to address polynomial functions of greater order. The analytical expressions of the gravitational potential and gravity vector are numerically validated and compared with alternative methods retrieved from the literature.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有三维多项式密度对比的多面体引力场
摘要 对于具有任意形状和多项式类型密度分布的多面体质量体,我们提出了一种张量方法来推导重力势能和重力矢量的分析表达式。这些表达式通过公式在任意点进行评估,参考具有任意原点的笛卡尔参照系,无论观测点相对于天体的位置如何,这些公式都证明是无奇异点的。解法表示为代数量之和,完全取决于多面体顶点的三维坐标和多项式密度函数的系数。因此,无需像 Ren 等人最近的论文(Surv Geophys 41:695-722, 2020 年)那样使用递归表达式。此外,本文所建立的张量形式主义可以让我们得到更简洁的无坐标表达式,还可以扩展到更高阶的多项式函数。引力势和引力矢量的分析表达式得到了数值验证,并与从文献中检索到的其他方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surveys in Geophysics
Surveys in Geophysics 地学-地球化学与地球物理
CiteScore
10.00
自引率
10.90%
发文量
64
审稿时长
4.5 months
期刊介绍: Surveys in Geophysics publishes refereed review articles on the physical, chemical and biological processes occurring within the Earth, on its surface, in its atmosphere and in the near-Earth space environment, including relations with other bodies in the solar system. Observations, their interpretation, theory and modelling are covered in papers dealing with any of the Earth and space sciences.
期刊最新文献
Meta Learning for Improved Neural Network Wavefield Solutions An Overview of Theoretical Studies of Non-Seismic Phenomena Accompanying Earthquakes Identification and Verification of Geodynamic Risk Zones in the Western Carpathians Using Remote Sensing, Geophysical and GNSS Data Efficient Solutions for Forward Modeling of the Earth's Topographic Potential in Spheroidal Harmonics Special Issue on Earth’s Changing Water and Energy Cycle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1