首页 > 最新文献

Surveys in Geophysics最新文献

英文 中文
Extreme Events Contributing to Tipping Elements and Tipping Points 导致临界要素和临界点的极端事件
IF 4.6 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-11-16 DOI: 10.1007/s10712-024-09863-7
A. Romanou, G. C. Hegerl, S. I. Seneviratne, B. Abis, A. Bastos, A. Conversi, A. Landolfi, H. Kim, P. E. Lerner, J. Mekus, B. L. Otto-Bliesner, F. S. R. Pausata, I. Pinto, L. Suarez-Guiterrez

This review article provides a synthesis and perspective on how weather and climate extreme events can play a role in influencing tipping elements and triggering tipping points in the Earth System. An example of a potential critical global tipping point, induced by climate extremes in an increasingly warmer climate, is Amazon rainforest dieback that could be driven by regional increases in droughts and exacerbated by fires, in addition to deforestation. A tipping element associated with the boreal forest might also be vulnerable to heat, drought and fire. An oceanic example is the potential collapse of the Atlantic meridional overturning circulation due to extreme variability in freshwater inputs, while marine heatwaves and high acidity extremes can lead to coral reef collapse. Extreme heat events may furthermore play an important role in ice sheet, glacier and permafrost stability. Regional severe extreme events could also lead to tipping in ecosystems, as well as in human systems, in response to climate drivers. However, substantial scientific uncertainty remains on mechanistic links between extreme events and tipping points. Earth observations are of high relevance to evaluate and constrain those links between extreme events and tipping elements, by determining conditions leading to delayed recovery with a potential for tipping in the atmosphere, on land, in vegetation, and in the ocean. In the subsurface ocean, there is a lack of consistent, synoptic and high frequency observations of changes in both ocean physics and biogeochemistry. This review article shows the importance of considering the interface between extreme events and tipping points, two topics usually addressed in isolation, and the need for continued monitoring to observe early warning signs and to evaluate Earth system response to extreme events as well as improving model skill in simulating extremes, compound extremes and tipping elements.

这篇综述文章综述和透视了天气和气候极端事件如何在影响地球系统的临界要素和触发临界点方面发挥作用。在气候日益变暖的情况下,极端气候事件可能会诱发一个关键的全球临界点,亚马逊雨林的衰退就是一个例子,除了森林砍伐之外,区域性干旱的增加和火灾也会加剧亚马逊雨林的衰退。与北方森林相关的一个临界点也可能易受高温、干旱和火灾的影响。海洋方面的一个例子是,由于淡水输入的极端变化,大西洋经向翻转环流可能崩溃,而海洋热浪和高酸度极端事件可能导致珊瑚礁崩溃。极端热事件还可能在冰盖、冰川和永久冻土的稳定性方面发挥重要作用。区域性严重极端事件也可能导致生态系统以及人类系统在气候驱动因素的作用下发生倾覆。然而,极端事件与临界点之间的机理联系在科学上仍存在很大的不确定性。通过确定大气、陆地、植被和海洋中导致延迟恢复并可能出现临界点的条件,地球观测对于评估和制约极端事件与临界点之间的联系具有重要意义。在次表层海洋中,缺乏对海洋物理和生物地球化学变化的一致、同步和高频观测。这篇综述文章表明,必须考虑极端事件与临界点这两个通常被孤立处理的主题之间的联系,而且需要持续监测,以观察早期预警信号,评估地球系统对极端事件的反应,以及提高模拟极端事件、复合极端事件和临界点的模型技能。
{"title":"Extreme Events Contributing to Tipping Elements and Tipping Points","authors":"A. Romanou, G. C. Hegerl, S. I. Seneviratne, B. Abis, A. Bastos, A. Conversi, A. Landolfi, H. Kim, P. E. Lerner, J. Mekus, B. L. Otto-Bliesner, F. S. R. Pausata, I. Pinto, L. Suarez-Guiterrez","doi":"10.1007/s10712-024-09863-7","DOIUrl":"https://doi.org/10.1007/s10712-024-09863-7","url":null,"abstract":"<p>This review article provides a synthesis and perspective on how weather and climate extreme events can play a role in influencing tipping elements and triggering tipping points in the Earth System. An example of a potential critical global tipping point, induced by climate extremes in an increasingly warmer climate, is Amazon rainforest dieback that could be driven by regional increases in droughts and exacerbated by fires, in addition to deforestation. A tipping element associated with the boreal forest might also be vulnerable to heat, drought and fire. An oceanic example is the potential collapse of the Atlantic meridional overturning circulation due to extreme variability in freshwater inputs, while marine heatwaves and high acidity extremes can lead to coral reef collapse. Extreme heat events may furthermore play an important role in ice sheet, glacier and permafrost stability. Regional severe extreme events could also lead to tipping in ecosystems, as well as in human systems, in response to climate drivers. However, substantial scientific uncertainty remains on mechanistic links between extreme events and tipping points. Earth observations are of high relevance to evaluate and constrain those links between extreme events and tipping elements, by determining conditions leading to delayed recovery with a potential for tipping in the atmosphere, on land, in vegetation, and in the ocean. In the subsurface ocean, there is a lack of consistent, synoptic and high frequency observations of changes in both ocean physics and biogeochemistry. This review article shows the importance of considering the interface between extreme events and tipping points, two topics usually addressed in isolation, and the need for continued monitoring to observe early warning signs and to evaluate Earth system response to extreme events as well as improving model skill in simulating extremes, compound extremes and tipping elements.</p>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"25 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Far-Zone Effects for Spherical Integral Transformations II: Formulas for Horizontal Boundary Value Problems and Their Derivatives 球面积分变换的远区效应 II:水平边界值问题公式及其导数
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-10-07 DOI: 10.1007/s10712-024-09842-y
Michal Šprlák, Martin Pitoňák

Integral formulas represent a methodological basis for the determination of gravitational fields generated by planetary bodies. In particular, spherical integral transformations are preferred for their symmetrical properties with the integration domain being the entire surface of the sphere. However, global coverage of boundary values is rarely guaranteed. In practical calculations, we therefore split the spherical surface into a near zone and a far zone, for convenience, by a spherical cap. While the gravitational effect in the near zone can be evaluated by numerical integration over available boundary values, the contribution of the far zone has to be precisely quantified by other means. Far-zone effects for the isotropic integral transformations and those depending on the direct azimuth have adequately been discussed. On the other hand, this subject has only marginally been addressed for the spherical integral formulas that are, except for other variables, also functions of the backward azimuth. In this article, we significantly advance the existing geodetic methodology by deriving the far-zone effects for the two classes of spherical integral transformations: (1) the analytical solutions of the horizontal, horizontal–horizontal, and horizontal–horizontal–horizontal BVPs including their generalisations with arbitrary-order vertical derivative of respective boundary conditions and (2) spatial (vertical, horizontal, or mixed) derivatives of these generalised analytical solutions up to the third order. The integral and spectral forms of the far-zone effects are implemented in MATLAB software package, and their consistency is tested in closed-loop simulations. The presented methodology can be employed in upward/downward continuation of potential field observables or for a quantification of error propagation through spherical integral transformations.

积分公式是确定行星体产生的引力场的方法论基础。其中,球面积分变换因其对称性而受到青睐,积分域为整个球面。然而,很少能保证边界值的全局覆盖。因此,在实际计算中,为了方便起见,我们用球面帽将球面分为近区和远区。近区的引力效应可以通过对现有边界值进行数值积分来评估,而远区的引力效应则必须通过其他方法精确量化。各向同性积分变换的远区效应以及取决于直接方位角的远区效应已经得到充分讨论。另一方面,对于球面积分公式(除其他变量外,也是后向方位角的函数),这一主题的讨论还很有限。在本文中,我们通过推导以下两类球面积分变换的远区效应,大大推进了现有的大地测量方法:(1) 水平、水平-水平和水平-水平-水平 BVPs 的解析解,包括它们与各自边界条件的任意阶垂直导数的泛函;(2) 这些泛函解析解的空间(垂直、水平或混合)导数,直至三阶。远区效应的积分和频谱形式在 MATLAB 软件包中实现,并在闭环模拟中测试其一致性。提出的方法可用于势场观测值的向上/向下延续,或通过球形积分变换对误差传播进行量化。
{"title":"Far-Zone Effects for Spherical Integral Transformations II: Formulas for Horizontal Boundary Value Problems and Their Derivatives","authors":"Michal Šprlák,&nbsp;Martin Pitoňák","doi":"10.1007/s10712-024-09842-y","DOIUrl":"10.1007/s10712-024-09842-y","url":null,"abstract":"<div><p>Integral formulas represent a methodological basis for the determination of gravitational fields generated by planetary bodies. In particular, spherical integral transformations are preferred for their symmetrical properties with the integration domain being the entire surface of the sphere. However, global coverage of boundary values is rarely guaranteed. In practical calculations, we therefore split the spherical surface into a near zone and a far zone, for convenience, by a spherical cap. While the gravitational effect in the near zone can be evaluated by numerical integration over available boundary values, the contribution of the far zone has to be precisely quantified by other means. Far-zone effects for the isotropic integral transformations and those depending on the direct azimuth have adequately been discussed. On the other hand, this subject has only marginally been addressed for the spherical integral formulas that are, except for other variables, also functions of the backward azimuth. In this article, we significantly advance the existing geodetic methodology by deriving the far-zone effects for the two classes of spherical integral transformations: (1) the analytical solutions of the horizontal, horizontal–horizontal, and horizontal–horizontal–horizontal BVPs including their generalisations with arbitrary-order vertical derivative of respective boundary conditions and (2) spatial (vertical, horizontal, or mixed) derivatives of these generalised analytical solutions up to the third order. The integral and spectral forms of the far-zone effects are implemented in MATLAB software package, and their consistency is tested in closed-loop simulations. The presented methodology can be employed in upward/downward continuation of potential field observables or for a quantification of error propagation through spherical integral transformations.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 5","pages":"1663 - 1713"},"PeriodicalIF":4.9,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-024-09842-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Investigation of Fluid Types in Shale Oil Reservoirs 更正:页岩油藏流体类型调查
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-16 DOI: 10.1007/s10712-024-09851-x
Xiaojiao Pang, Guiwen Wang, Lichun Kuang, Jin Lai, Nigel P. Mountney
{"title":"Correction: Investigation of Fluid Types in Shale Oil Reservoirs","authors":"Xiaojiao Pang,&nbsp;Guiwen Wang,&nbsp;Lichun Kuang,&nbsp;Jin Lai,&nbsp;Nigel P. Mountney","doi":"10.1007/s10712-024-09851-x","DOIUrl":"10.1007/s10712-024-09851-x","url":null,"abstract":"","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 5","pages":"1595 - 1600"},"PeriodicalIF":4.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromagnetic Subsurface Imaging in the Presence of Metallic Structures: A Review of Numerical Strategies 存在金属结构时的电磁地表下成像:数值策略综述
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-28 DOI: 10.1007/s10712-024-09855-7
Octavio Castillo-Reyes, Pilar Queralt, Perla Piñas-Varas, Juanjo Ledo, Otilio Rojas

Electromagnetic (EM) imaging aims to produce large-scale, high-resolution soil conductivity maps that provide essential information for Earth subsurface exploration. To rigorously generate EM subsurface models, one must address both the forward problem and the inverse problem. From these subsurface resistivity maps, also referred to as volumes of resistivity distribution, it is possible to extract useful information (lithology, temperature, porosity, permeability, among others) to improve our knowledge about geo-resources on which modern society depends (e.g., energy, groundwater, and raw materials, among others). However, this ability to detect electrical resistivity contrasts also makes EM imaging techniques sensitive to metallic structures whose EM footprint often exceeds their diminutive stature compared to surrounding materials. Depending on target applications, this behavior can be advantageous or disadvantageous. In this work, we review EM modeling and inverse solutions in the presence of metallic structures, emphasizing how these structures affect EM data acquisition and interpretation. By addressing the challenges posed by metallic structures, our aim is to enhance the accuracy and reliability of subsurface EM characterization, ultimately leading to improved management of geo-resources and environmental monitoring. Here, we consider the latter through the lens of a triple helix approach: physics behind metallic structures in EM modeling and imaging, development of computational tools (conventional strategies and artificial intelligence schemes), and configurations and applications. The literature review shows that, despite recent scientific advancements, EM imaging techniques are still being developed, as are software-based data processing and interpretation tools. Such progress must address geological complexities and metallic casing measurements integrity in increasing detail setups. We hope this review will provide inspiration for researchers to study the fascinating EM problem, as well as establishing a robust technological ecosystem to those interested in studying EM fields affected by metallic artifacts.

电磁(EM)成像旨在生成大尺度、高分辨率的土壤电导率图,为地球地下勘探提供重要信息。要严格生成电磁地下模型,必须同时解决正向问题和反向问题。从这些次表层电阻率图(也称为电阻率分布图)中可以提取有用的信息(岩性、温度、孔隙度、渗透性等),从而提高我们对现代社会所依赖的地质资源(如能源、地下水和原材料等)的认识。然而,这种检测电阻率对比的能力也使电磁成像技术对金属结构非常敏感,因为与周围材料相比,金属结构的电磁足迹往往超过其微小的体积。根据目标应用的不同,这种行为可能是有利的,也可能是不利的。在这项工作中,我们回顾了存在金属结构时的电磁建模和逆解,强调了这些结构如何影响电磁数据的采集和解读。通过应对金属结构带来的挑战,我们的目标是提高地下电磁特征描述的准确性和可靠性,最终改善地质资源管理和环境监测。在此,我们通过三螺旋方法来考虑后者:电磁建模和成像中金属结构背后的物理学、计算工具的开发(传统策略和人工智能方案)以及配置和应用。文献综述表明,尽管最近取得了科学进步,但电磁成像技术仍在不断发展,基于软件的数据处理和解释工具也是如此。这种进步必须解决地质复杂性和金属套管测量完整性的问题,并不断增加细节设置。我们希望这篇综述能为研究人员研究引人入胜的电磁问题提供灵感,并为有兴趣研究受金属工件影响的电磁场的人员建立一个强大的技术生态系统。
{"title":"Electromagnetic Subsurface Imaging in the Presence of Metallic Structures: A Review of Numerical Strategies","authors":"Octavio Castillo-Reyes,&nbsp;Pilar Queralt,&nbsp;Perla Piñas-Varas,&nbsp;Juanjo Ledo,&nbsp;Otilio Rojas","doi":"10.1007/s10712-024-09855-7","DOIUrl":"10.1007/s10712-024-09855-7","url":null,"abstract":"<div><p>Electromagnetic (EM) imaging aims to produce large-scale, high-resolution soil conductivity maps that provide essential information for Earth subsurface exploration. To rigorously generate EM subsurface models, one must address both the forward problem and the inverse problem. From these subsurface resistivity maps, also referred to as volumes of resistivity distribution, it is possible to extract useful information (lithology, temperature, porosity, permeability, among others) to improve our knowledge about geo-resources on which modern society depends (e.g., energy, groundwater, and raw materials, among others). However, this ability to detect electrical resistivity contrasts also makes EM imaging techniques sensitive to metallic structures whose EM footprint often exceeds their diminutive stature compared to surrounding materials. Depending on target applications, this behavior can be advantageous or disadvantageous. In this work, we review EM modeling and inverse solutions in the presence of metallic structures, emphasizing how these structures affect EM data acquisition and interpretation. By addressing the challenges posed by metallic structures, our aim is to enhance the accuracy and reliability of subsurface EM characterization, ultimately leading to improved management of geo-resources and environmental monitoring. Here, we consider the latter through the lens of a triple helix approach: physics behind metallic structures in EM modeling and imaging, development of computational tools (conventional strategies and artificial intelligence schemes), and configurations and applications. The literature review shows that, despite recent scientific advancements, EM imaging techniques are still being developed, as are software-based data processing and interpretation tools. Such progress must address geological complexities and metallic casing measurements integrity in increasing detail setups. We hope this review will provide inspiration for researchers to study the fascinating EM problem, as well as establishing a robust technological ecosystem to those interested in studying EM fields affected by metallic artifacts.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 5","pages":"1627 - 1661"},"PeriodicalIF":4.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-024-09855-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the Adjoint Method in Seismology: Theory and Implementation in the Time Domain 了解地震学中的邻接法:时域理论与实施
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-23 DOI: 10.1007/s10712-024-09847-7
Rafael Abreu

The adjoint method is a popular method used for seismic (full-waveform) inversion today. The method is considered to give more realistic and detailed images of the interior of the Earth by the use of more realistic physics. It relies on the definition of an adjoint wavefield (hence its name) that is the time-reversed synthetics that satisfy the original equations of motion. The physical justification of the nature of the adjoint wavefield is, however, commonly done by brute force with ad hoc assumptions and/or relying on the existence of Green’s functions, the representation theorem and/or the Born approximation. Using variational principles only, and without these mentioned assumptions and/or additional mathematical tools, we show that the time-reversed adjoint wavefield should be defined as a premise that leads to the correct adjoint equations. This allows us to clarify mathematical inconsistencies found in previous seminal works when dealing with viscoelastic attenuation and/or odd-order derivative terms in the equation of motion. We then discuss some methodologies for the numerical implementation of the method in the time domain and to present a variational formulation for the construction of different misfit functions. We here define a new misfit travel-time function that allows us to find consensus for the longstanding debate on the zero sensitivity along the ray path that cross-correlation travel-time measurements show. In fact, we prove that the zero sensitivity along the ray path appears as a consequence of the assumption on the similarity between data and synthetics required to perform cross-correlation travel-time measurements. When no assumption between data and synthetics is preconceived, travel-time Fréchet kernels show an extremum along the ray path as one intuitively would expect.

邻接法是当今用于地震(全波形)反演的一种流行方法。该方法被认为通过使用更真实的物理学原理,可提供更真实、更详细的地球内部图像。它依赖于邻接波场(因此而得名)的定义,即满足原始运动方程的时间反演合成。然而,对邻接波场性质的物理论证通常是通过临时假设和/或依靠格林函数的存在、表示定理和/或玻恩近似来完成的。我们仅使用变分原理,而无需上述假设和/或额外的数学工具,就能证明时间反转的邻接波场应被定义为导致正确邻接方程的前提。这使我们能够澄清以前的开创性著作在处理运动方程中的粘弹性衰减和/或奇数阶导数项时发现的数学不一致性。然后,我们讨论了在时域中数值实施该方法的一些方法,并提出了构建不同误拟合函数的变分公式。在此,我们定义了一种新的误拟合旅行时间函数,使我们能够就长期以来关于交叉相关旅行时间测量所显示的沿射线路径零灵敏度的争论达成共识。事实上,我们证明了沿射线路径的零灵敏度是进行交叉相关旅行时间测量所需的数据与合成物相似性假设的结果。如果不预先假设数据和合成物之间的相似性,那么旅行时间弗雷谢特核就会像人们直观预期的那样,在射线路径上出现一个极值。
{"title":"Understanding the Adjoint Method in Seismology: Theory and Implementation in the Time Domain","authors":"Rafael Abreu","doi":"10.1007/s10712-024-09847-7","DOIUrl":"10.1007/s10712-024-09847-7","url":null,"abstract":"<div><p>The adjoint method is a popular method used for seismic (full-waveform) inversion today. The method is considered to give more realistic and detailed images of the interior of the Earth by the use of more realistic physics. It relies on the definition of an adjoint wavefield (hence its name) that is the time-reversed synthetics that satisfy the original equations of motion. The physical justification of the nature of the adjoint wavefield is, however, commonly done by brute force with ad hoc assumptions and/or relying on the existence of Green’s functions, the representation theorem and/or the Born approximation. Using variational principles only, and without these mentioned assumptions and/or additional mathematical tools, we show that the time-reversed adjoint wavefield should be defined as a premise that leads to the correct adjoint equations. This allows us to clarify mathematical inconsistencies found in previous seminal works when dealing with viscoelastic attenuation and/or odd-order derivative terms in the equation of motion. We then discuss some methodologies for the numerical implementation of the method in the time domain and to present a variational formulation for the construction of different misfit functions. We here define a new misfit travel-time function that allows us to find consensus for the longstanding debate on the zero sensitivity along the ray path that cross-correlation travel-time measurements show. In fact, we prove that the zero sensitivity along the ray path appears as a consequence of the assumption on the similarity between data and synthetics required to perform cross-correlation travel-time measurements. When no assumption between data and synthetics is preconceived, travel-time Fréchet kernels show an extremum along the ray path as one intuitively would expect.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 5","pages":"1363 - 1434"},"PeriodicalIF":4.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review on Intelligent Recognition with Logging Data: Tasks, Current Status and Challenges 日志数据智能识别综述:任务、现状与挑战
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-14 DOI: 10.1007/s10712-024-09853-9
Xinyi Zhu, Hongbing Zhang, Quan Ren, Lingyuan Zhang, Guojiao Huang, Zuoping Shang, Jiangbing Sun

Geophysical logging series are valuable geological data that record the physical and chemical information of borehole walls and in-situ formations, and are widely used by geologists for interpreting geological problems due to their continuity, high resolution, and ease of access. Recently, machine learning methods are gradually bringing data science and geoscience closer together, and Intelligent Recognition using Logging Data (IRLD) is increasingly becoming an important interpretation task. However, due to the specificity of geological information, relatively low data quality makes the direct application of machine learning models to IRLD often not optimal. And to the best of our knowledge, IRLDs are not highly generalizable and technical surveys are still lacking. Therefore, this paper presents a comprehensive review of IRLD. Specifically, after systematically reviewing geophysical well logging and machine learning techniques, the main applications and general processes for the cross-discipline task of IRLD are summarized. More importantly, the key challenges of IRLD in the four stages of data acquisition, feature engineering, model building, and practical application are discussed in this review. The potential risks of these challenges are visualized by using real logging data from a study area in the South China Sea and the example of a lithology identification task. For these challenges, we give the current state-of-the-art methods and feasible strategies in conjunction with published research. This comprehensive review is expected to provide insights for practitioners to construct more robust models and achieve more effective application results in IRLD.

地球物理测井系列是记录井壁和原位地层物理和化学信息的宝贵地质数据,因其连续性强、分辨率高、易于获取等特点,被地质学家广泛用于解释地质问题。近来,机器学习方法逐渐拉近了数据科学与地球科学的距离,利用测井数据进行智能识别(IRLD)日益成为一项重要的解释任务。然而,由于地质信息的特殊性,相对较低的数据质量使得将机器学习模型直接应用于 IRLD 往往并不理想。而且据我们所知,IRLD 的通用性不高,仍然缺乏技术调查。因此,本文对 IRLD 进行了全面回顾。具体而言,在系统回顾地球物理测井和机器学习技术之后,总结了 IRLD 这一跨学科任务的主要应用和一般流程。更重要的是,本综述讨论了 IRLD 在数据采集、特征工程、模型构建和实际应用四个阶段面临的主要挑战。通过南海研究区的真实测井数据和岩性识别任务实例,直观地说明了这些挑战的潜在风险。针对这些挑战,我们结合已发表的研究成果,给出了当前最先进的方法和可行的策略。这一全面综述有望为实践者构建更强大的模型和在 IRLD 中取得更有效的应用成果提供启示。
{"title":"A Review on Intelligent Recognition with Logging Data: Tasks, Current Status and Challenges","authors":"Xinyi Zhu,&nbsp;Hongbing Zhang,&nbsp;Quan Ren,&nbsp;Lingyuan Zhang,&nbsp;Guojiao Huang,&nbsp;Zuoping Shang,&nbsp;Jiangbing Sun","doi":"10.1007/s10712-024-09853-9","DOIUrl":"10.1007/s10712-024-09853-9","url":null,"abstract":"<div><p>Geophysical logging series are valuable geological data that record the physical and chemical information of borehole walls and in-situ formations, and are widely used by geologists for interpreting geological problems due to their continuity, high resolution, and ease of access. Recently, machine learning methods are gradually bringing data science and geoscience closer together, and Intelligent Recognition using Logging Data (IRLD) is increasingly becoming an important interpretation task. However, due to the specificity of geological information, relatively low data quality makes the direct application of machine learning models to IRLD often not optimal. And to the best of our knowledge, IRLDs are not highly generalizable and technical surveys are still lacking. Therefore, this paper presents a comprehensive review of IRLD. Specifically, after systematically reviewing geophysical well logging and machine learning techniques, the main applications and general processes for the cross-discipline task of IRLD are summarized. More importantly, the key challenges of IRLD in the four stages of data acquisition, feature engineering, model building, and practical application are discussed in this review. The potential risks of these challenges are visualized by using real logging data from a study area in the South China Sea and the example of a lithology identification task. For these challenges, we give the current state-of-the-art methods and feasible strategies in conjunction with published research. This comprehensive review is expected to provide insights for practitioners to construct more robust models and achieve more effective application results in IRLD.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 5","pages":"1493 - 1526"},"PeriodicalIF":4.9,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decadal Variations in Equatorial Ellipticity and Principal Axis of the Earth from Satellite Laser Ranging/GRACE 从卫星激光测距/GRACE 看地球赤道椭圆度和主轴的十年变化
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-03 DOI: 10.1007/s10712-024-09852-w
Minkang Cheng

The Earth exhibits an equatorial flattening specified by the ellipticity and the east longitude (or orientation) of the equatorial major axis, which is uniquely determined by the degree 2 and order 2 gravitational coefficients, C22 and S22. The 31-year SLR (satellite laser ranging) and 22-year GRACE/GRACE-FO (gravity recovery and climate experiment) data are analyzed to study the climate-related secular and 5.7 years to decadal variations in C22 and S22, in turn, the drift and decadal variation in the Earth’s equatorial ellipticity and orientation of the principal axis of the least moment of inertia. The effects of the surface floating mass changes (including atmosphere, ocean and surface water redistribution and the melting of the mountain and polar glaciers) and the interior fluid convective (Earth’s core flows) were evaluated. Results reveal that the equatorial ellipticity of the Earth is linearly increasing along with a remarkable decadal variation and the Earth’s equator is flattening by ~ 0.16 mm/yr.

地球呈现出一种赤道扁平化现象,由赤道主轴的椭圆度和东经(或方位)决定,而赤道主轴的椭圆度和东经(或方位)则由度数 2 和阶数 2 重力系数 C22 和 S22 唯一决定。通过分析 31 年的卫星激光测距(SLR)和 22 年的重力恢复和气候实验(GRACE/GRACE-FO)数据,研究了与气候相关的 C22 和 S22 的世代变化和 5.7 年至十年的变化,进而研究了地球赤道椭圆度和最小惯性矩主轴方向的漂移和十年变化。对地表浮动质量变化(包括大气、海洋和地表水的重新分布以及高山和极地冰川的融化)和内部流体对流(地核流动)的影响进行了评估。结果显示,地球赤道椭圆度呈线性上升趋势,并有显著的十年变化,地球赤道以 ~ 0.16 毫米/年的速度变平。
{"title":"Decadal Variations in Equatorial Ellipticity and Principal Axis of the Earth from Satellite Laser Ranging/GRACE","authors":"Minkang Cheng","doi":"10.1007/s10712-024-09852-w","DOIUrl":"10.1007/s10712-024-09852-w","url":null,"abstract":"<div><p>The Earth exhibits an equatorial flattening specified by the ellipticity and the east longitude (or orientation) of the equatorial major axis, which is uniquely determined by the degree 2 and order 2 gravitational coefficients, <i>C</i><sub>22</sub> and <i>S</i><sub>22</sub>. The 31-year SLR (satellite laser ranging) and 22-year GRACE/GRACE-FO (gravity recovery and climate experiment) data are analyzed to study the climate-related secular and 5.7 years to decadal variations in <i>C</i><sub>22</sub> and <i>S</i><sub>22</sub>, in turn, the drift and decadal variation in the Earth’s equatorial ellipticity and orientation of the principal axis of the least moment of inertia. The effects of the surface floating mass changes (including atmosphere, ocean and surface water redistribution and the melting of the mountain and polar glaciers) and the interior fluid convective (Earth’s core flows) were evaluated. Results reveal that the equatorial ellipticity of the Earth is linearly increasing along with a remarkable decadal variation and the Earth’s equator is flattening by ~ 0.16 mm/yr.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 5","pages":"1601 - 1626"},"PeriodicalIF":4.9,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-Rank Approximation Reconstruction of Five-Dimensional Seismic Data 五维地震数据的低库近似重构
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-27 DOI: 10.1007/s10712-024-09848-6
Gui Chen, Yang Liu, Mi Zhang, Yuhang Sun, Haoran Zhang

Low-rank approximation has emerged as a promising technique for recovering five-dimensional (5D) seismic data, yet the quest for higher accuracy and stronger rank robustness remains a critical pursuit. We introduce a low-rank approximation method by leveraging the complete graph tensor network (CGTN) decomposition and the learnable transform (LT), referred to as the LRA-LTCGTN method, to simultaneously denoise and reconstruct 5D seismic data. In the LRA-LTCGTN framework, the LT is employed to project the frequency tensor of the original 5D data onto a small-scale latent space. Subsequently, the CGTN decomposition is executed on this latent space. We adopt the proximal alternating minimization algorithm to optimize each variable. Both 5D synthetic data and field data examples indicate that the LRA-LTCGTN method exhibits notable advantages and superior efficiency compared to the damped rank-reduction (DRR), parallel matrix factorization (PMF), and LRA-CGTN methods. Moreover, a sensitivity analysis underscores the remarkably stronger robustness of the LRA-LTCGTN method in terms of rank without any optimization procedure with respect to rank, compared to the LRA-CGTN method.

低秩近似已成为恢复五维(5D)地震数据的一项前景广阔的技术,但追求更高的精度和更强的秩稳健性仍是一项关键任务。我们介绍了一种利用完整图张量网络(CGTN)分解和可学习变换(LT)的低秩近似方法,称为 LRA-LTCGTN 方法,可同时对五维地震数据进行去噪和重建。在 LRA-LTCGTN 框架中,LT 被用来将原始 5D 数据的频率张量投影到一个小尺度的潜在空间。随后,在该潜空间上执行 CGTN 分解。我们采用近似交替最小化算法来优化每个变量。5D 合成数据和实地数据实例都表明,与阻尼秩还原法(DRR)、并行矩阵因式分解法(PMF)和 LRA-CGTN 方法相比,LRA-LTCGTN 方法具有显著的优势和更高的效率。此外,一项敏感性分析强调,与 LRA-CGTN 方法相比,LRA-LTCGTN 方法在秩方面具有显著更强的鲁棒性,而无需对秩进行任何优化。
{"title":"Low-Rank Approximation Reconstruction of Five-Dimensional Seismic Data","authors":"Gui Chen,&nbsp;Yang Liu,&nbsp;Mi Zhang,&nbsp;Yuhang Sun,&nbsp;Haoran Zhang","doi":"10.1007/s10712-024-09848-6","DOIUrl":"10.1007/s10712-024-09848-6","url":null,"abstract":"<div><p>Low-rank approximation has emerged as a promising technique for recovering five-dimensional (5D) seismic data, yet the quest for higher accuracy and stronger rank robustness remains a critical pursuit. We introduce a low-rank approximation method by leveraging the complete graph tensor network (CGTN) decomposition and the learnable transform (LT), referred to as the LRA-LTCGTN method, to simultaneously denoise and reconstruct 5D seismic data. In the LRA-LTCGTN framework, the LT is employed to project the frequency tensor of the original 5D data onto a small-scale latent space. Subsequently, the CGTN decomposition is executed on this latent space. We adopt the proximal alternating minimization algorithm to optimize each variable. Both 5D synthetic data and field data examples indicate that the LRA-LTCGTN method exhibits notable advantages and superior efficiency compared to the damped rank-reduction (DRR), parallel matrix factorization (PMF), and LRA-CGTN methods. Moreover, a sensitivity analysis underscores the remarkably stronger robustness of the LRA-LTCGTN method in terms of rank without any optimization procedure with respect to rank, compared to the LRA-CGTN method.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 5","pages":"1459 - 1492"},"PeriodicalIF":4.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Q: A Review 问:回顾
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-26 DOI: 10.1007/s10712-024-09850-y
José M. Carcione, Francesco Mainardi, Ayman N. Qadrouh, Mamdoh Alajmi, Jing Ba

The quality factor Q is a dimensionless measure of the energy loss per cycle of a wave field, and a proper understanding of this factor is important in a variety of fields, from seismology, geophysical prospecting to electrical science. Here, the focus is on viscoelasticity. When interpreting experimental values, several factors must be taken into account, in particular the shape of the medium (rods, bars or unbounded media) and the fact that the measurements are made on stationary or propagating modes. From a theoretical point of view, the expressions of Q may differ due to different definitions, the spatial dimension and the inhomogeneity of the wave, i.e. the fact that the vectors of propagation (or wavenumber) and attenuation do not point in the same direction. We show the difference between temporal and spatial Q, the relationships between compressional and shear Q, the dependence on frequency, the case of poro-viscoelasticity and anisotropy, the effect of inhomogeneous waves and various loss mechanisms, and consider the analogy between elastic and electromagnetic waves. We discuss physical theories describing relaxation peaks, bounds on Q and experiments showing the behaviour of Q as a function of frequency, saturation and pore pressure. Finally, we propose an application example where Q can be used to estimate porosity and saturation.

品质因数 Q 是衡量波场每周期能量损失的无量纲指标,正确理解这一因子在地震学、地球物理勘探和电气科学等多个领域都非常重要。这里的重点是粘弹性。在解释实验值时,必须考虑几个因素,特别是介质的形状(杆、棒或无约束介质)以及测量是针对静止模式还是传播模式这一事实。从理论角度来看,由于定义不同、空间维度和波的不均匀性(即传播(或波长)和衰减的矢量并不指向同一方向),Q 值的表达式可能会有所不同。我们展示了时间 Q 值和空间 Q 值之间的区别、压缩 Q 值和剪切 Q 值之间的关系、对频率的依赖性、孔隙-粘弹性和各向异性的情况、不均匀波和各种损耗机制的影响,并考虑了弹性波和电磁波之间的类比。我们讨论了描述弛豫峰值的物理理论、Q 值的界限以及显示 Q 值作为频率、饱和度和孔隙压力函数的行为的实验。最后,我们提出了一个应用实例,Q 值可用于估算孔隙度和饱和度。
{"title":"Q: A Review","authors":"José M. Carcione,&nbsp;Francesco Mainardi,&nbsp;Ayman N. Qadrouh,&nbsp;Mamdoh Alajmi,&nbsp;Jing Ba","doi":"10.1007/s10712-024-09850-y","DOIUrl":"10.1007/s10712-024-09850-y","url":null,"abstract":"<div><p>The quality factor <i>Q</i> is a dimensionless measure of the energy loss per cycle of a wave field, and a proper understanding of this factor is important in a variety of fields, from seismology, geophysical prospecting to electrical science. Here, the focus is on viscoelasticity. When interpreting experimental values, several factors must be taken into account, in particular the shape of the medium (rods, bars or unbounded media) and the fact that the measurements are made on stationary or propagating modes. From a theoretical point of view, the expressions of <i>Q</i> may differ due to different definitions, the spatial dimension and the inhomogeneity of the wave, i.e. the fact that the vectors of propagation (or wavenumber) and attenuation do not point in the same direction. We show the difference between temporal and spatial <i>Q</i>, the relationships between compressional and shear <i>Q</i>, the dependence on frequency, the case of poro-viscoelasticity and anisotropy, the effect of inhomogeneous waves and various loss mechanisms, and consider the analogy between elastic and electromagnetic waves. We discuss physical theories describing relaxation peaks, bounds on <i>Q</i> and experiments showing the behaviour of <i>Q</i> as a function of frequency, saturation and pore pressure. Finally, we propose an application example where <i>Q</i> can be used to estimate porosity and saturation.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 5","pages":"1435 - 1458"},"PeriodicalIF":4.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpolated Fast Damped Multichannel Singular Spectrum Analysis for Deblending of Off-the-Grid Blended Data 插值式快速阻尼多通道奇异频谱分析法用于非网格混合数据的疏解
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-09 DOI: 10.1007/s10712-024-09835-x
Zhuowei Li, Jiawen Song, Rongzhi Lin, Benfeng Wang

Blended acquisition offers significant cost and period reduction in seismic data acquisition. However, fired blended sources are usually deployed at off-the-grid (OffG) samples due to obstacle limitation and economic cost considerations. The irregular distribution of coordinates, along with the blending noise, has a detrimental effect on the performance of subsequent seismic processing and imaging. The interpolated multichannel singular spectrum analysis (I-MSSA) algorithm effectively provides on-the-grid deblended results by employing an interpolator, in conjunction with a projected gradient descent strategy. However, the deblending accuracy and computational efficiency of the I-MSSA are still a concern due to the limitations of the traditional singular value decomposition (SVD). To address these limitations, we propose an interpolated fast damped multichannel singular spectrum analysis (I-FDMSSA) rank-reduction algorithm. The proposed algorithm incorporates the damping operator, the randomized SVD (RSVD) and the fast Fourier transform (FFT) strategy. The damping operator can further attenuate the remaining noise in the estimated signal obtained from the truncated SVD, resulting in an improved deblending performance. The RSVD accelerates the rank-reduction process by shrinking the size of the Hankel matrix. To expedite the rank-reduction and anti-diagonal averaging stages without explicitly constructing large-scale block Hankel matrices, the FFT strategy is employed. By incorporating a 2D separable sinc interpolator, the I-FDMSSA enables an efficient and accurate deblending of 3D OffG blended data. The deblending performance and operational efficiency improvements of the proposed I-FDMSSA algorithm over the traditional I-MSSA algorithm are demonstrated through OffG synthetic and field blended data examples.

混合采集可显著降低地震数据采集的成本和周期。然而,由于障碍物的限制和经济成本的考虑,发射的混合震源通常部署在离网(OffG)采样点。坐标的不规则分布以及混合噪声会对后续地震处理和成像性能产生不利影响。内插多道奇异频谱分析(I-MSSA)算法通过使用内插器,结合投影梯度下降策略,有效地提供了网格上的除杂结果。然而,由于传统奇异值分解(SVD)的局限性,I-MSSA 的除谱精度和计算效率仍然令人担忧。针对这些局限性,我们提出了一种插值快速阻尼多通道奇异频谱分析(I-FDMSSA)秩还原算法。该算法结合了阻尼算子、随机 SVD (RSVD) 和快速傅立叶变换 (FFT) 策略。阻尼算子能进一步减弱截断 SVD 得到的估计信号中的剩余噪声,从而提高排阻性能。RSVD 通过缩小 Hankel 矩阵的大小来加速秩还原过程。为了在不明确构建大规模块 Hankel 矩阵的情况下加快秩还原和反对角平均阶段,我们采用了 FFT 策略。通过结合二维可分离 sinc 内插器,I-FDMSSA 能够对三维 OffG 混合数据进行高效、准确的去层。与传统的 I-MSSA 算法相比,所提出的 I-FDMSSA 算法在排错性能和运行效率方面的改进通过 OffG 合成数据和实地混合数据实例进行了演示。
{"title":"Interpolated Fast Damped Multichannel Singular Spectrum Analysis for Deblending of Off-the-Grid Blended Data","authors":"Zhuowei Li,&nbsp;Jiawen Song,&nbsp;Rongzhi Lin,&nbsp;Benfeng Wang","doi":"10.1007/s10712-024-09835-x","DOIUrl":"10.1007/s10712-024-09835-x","url":null,"abstract":"<div><p>Blended acquisition offers significant cost and period reduction in seismic data acquisition. However, fired blended sources are usually deployed at off-the-grid (OffG) samples due to obstacle limitation and economic cost considerations. The irregular distribution of coordinates, along with the blending noise, has a detrimental effect on the performance of subsequent seismic processing and imaging. The interpolated multichannel singular spectrum analysis (I-MSSA) algorithm effectively provides on-the-grid deblended results by employing an interpolator, in conjunction with a projected gradient descent strategy. However, the deblending accuracy and computational efficiency of the I-MSSA are still a concern due to the limitations of the traditional singular value decomposition (SVD). To address these limitations, we propose an interpolated fast damped multichannel singular spectrum analysis (I-FDMSSA) rank-reduction algorithm. The proposed algorithm incorporates the damping operator, the randomized SVD (RSVD) and the fast Fourier transform (FFT) strategy. The damping operator can further attenuate the remaining noise in the estimated signal obtained from the truncated SVD, resulting in an improved deblending performance. The RSVD accelerates the rank-reduction process by shrinking the size of the Hankel matrix. To expedite the rank-reduction and anti-diagonal averaging stages without explicitly constructing large-scale block Hankel matrices, the FFT strategy is employed. By incorporating a 2D separable sinc interpolator, the I-FDMSSA enables an efficient and accurate deblending of 3D OffG blended data. The deblending performance and operational efficiency improvements of the proposed I-FDMSSA algorithm over the traditional I-MSSA algorithm are demonstrated through OffG synthetic and field blended data examples.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 4","pages":"1177 - 1204"},"PeriodicalIF":4.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Surveys in Geophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1