首页 > 最新文献

Surveys in Geophysics最新文献

英文 中文
Meta Learning for Improved Neural Network Wavefield Solutions 改进神经网络波场解决方案的元学习
IF 4.6 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-01-04 DOI: 10.1007/s10712-024-09872-6
Shijun Cheng, Tariq Alkhalifah

Physics-informed neural networks (PINNs) provide a flexible and effective alternative for estimating seismic wavefield solutions due to their typical mesh-free and unsupervised features. However, their accuracy and training cost restrict their applicability. To address these issues, we propose a novel initialization for PINNs based on meta-learning to enhance their performance. In our framework, we first utilize meta-learning to train a common network initialization for a distribution of medium parameters (i.e., velocity models). This phase employs a unique training data container, comprising a support set and a query set. We use a dual-loop approach, optimizing network parameters through a bidirectional gradient update from the support set to the query set. Following this, we use the meta-trained PINN model as the initial model for a regular PINN training for a new velocity model, where the optimization of the network is jointly constrained by the physical and regularization losses. Numerical results demonstrate that, compared to the vanilla PINN with random initialization, our method achieves a much faster convergence speed, and also obtains a significant improvement in the results accuracy. Meanwhile, we showcase that our method can be integrated with existing optimal techniques to further enhance its performance.

物理信息神经网络(pinn)由于其典型的无网格和无监督特征,为估计地震波场解决方案提供了一种灵活有效的替代方案。然而,其准确性和训练成本限制了其适用性。为了解决这些问题,我们提出了一种基于元学习的pin初始化方法来提高它们的性能。在我们的框架中,我们首先利用元学习来训练一个中等参数分布(即速度模型)的公共网络初始化。这个阶段使用一个唯一的训练数据容器,包括一个支持集和一个查询集。我们使用双环方法,通过从支持集到查询集的双向梯度更新来优化网络参数。接下来,我们使用元训练的PINN模型作为初始模型,对新的速度模型进行规则的PINN训练,其中网络的优化受到物理损失和正则化损失的共同约束。数值结果表明,与随机初始化的vanilla PINN相比,本文方法的收敛速度要快得多,并且在结果精度上也有了明显的提高。同时,我们证明了我们的方法可以与现有的优化技术相结合,进一步提高其性能。
{"title":"Meta Learning for Improved Neural Network Wavefield Solutions","authors":"Shijun Cheng, Tariq Alkhalifah","doi":"10.1007/s10712-024-09872-6","DOIUrl":"https://doi.org/10.1007/s10712-024-09872-6","url":null,"abstract":"<p>Physics-informed neural networks (PINNs) provide a flexible and effective alternative for estimating seismic wavefield solutions due to their typical mesh-free and unsupervised features. However, their accuracy and training cost restrict their applicability. To address these issues, we propose a novel initialization for PINNs based on meta-learning to enhance their performance. In our framework, we first utilize meta-learning to train a common network initialization for a distribution of medium parameters (i.e., velocity models). This phase employs a unique training data container, comprising a support set and a query set. We use a dual-loop approach, optimizing network parameters through a bidirectional gradient update from the support set to the query set. Following this, we use the meta-trained PINN model as the initial model for a regular PINN training for a new velocity model, where the optimization of the network is jointly constrained by the physical and regularization losses. Numerical results demonstrate that, compared to the vanilla PINN with random initialization, our method achieves a much faster convergence speed, and also obtains a significant improvement in the results accuracy. Meanwhile, we showcase that our method can be integrated with existing optimal techniques to further enhance its performance.</p>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"41 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Overview of Theoretical Studies of Non-Seismic Phenomena Accompanying Earthquakes 伴随地震的非地震现象理论研究综述
IF 4.6 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-12-30 DOI: 10.1007/s10712-024-09869-1
Vadim V. Surkov

In this paper, we review the theoretical studies of the electromagnetic and other non-seismic phenomena accompanying earthquakes. This field of geophysical research is at the interception of several sciences: electrodynamics, solid-state physics, fracture mechanics, seismology, acoustic-gravity waves, magnetohydrodynamics, ionospheric plasma, etc. In order to make physics of these phenomena as transparent as possible, we use a simplified way of deriving some theoretical results and restrict our analysis to order-of-magnitude estimates. The main emphasis is on those theoretical models which give not only a qualitative, but also a quantitative, description of the observed phenomena. After some introductory material, the review is begun with an analysis of the causes of local changes in the rock conductivity occasionally observed before earthquake occurrence. The mechanisms of electrical conductivity in dry and wet rocks, including the electrokinetic effect, are discussed here. In the next section, the theories explaining the generation of low-frequency electromagnetic perturbations resulting from the rock fracture are covered. Two possible mechanisms of the coseismic electromagnetic response to the propagation of seismic waves are studied theoretically. Hereafter, we deal with atmospheric phenomena, which can be related to seismic events. Here we discuss models describing the effect of pre-seismic changes in radon activity on atmospheric conductivity and examine hypotheses explaining abnormal changes in the atmospheric electric field and in infrared radiation from the Earth, which are occasionally observed on Earth and from space over seismically active regions. In the next section, we review several physical mechanisms of ionospheric perturbations associated with seismic activity. Among them are acoustic-gravity waves resulting from the propagation of seismic waves and tsunamis and ionospheric perturbations caused by vertical acoustic resonance in the atmosphere. In the remainder of this paper, we discuss whether variations in radon activity and vertical seismogenic currents in the atmosphere can affect the ionosphere.

本文综述了地震伴生电磁现象和其他非地震现象的理论研究。这个地球物理研究领域是在几个科学的拦截:电动力学,固体物理学,断裂力学,地震学,声重力波,磁流体力学,电离层等离子体等。为了使这些现象的物理学尽可能透明,我们使用一种简化的方法来推导一些理论结果,并将我们的分析限制在数量级估计上。主要的重点是那些理论模型,它们不仅能定性地,而且能定量地描述所观察到的现象。在一些介绍性材料之后,本文开始分析地震发生前偶尔观察到的岩石导电性局部变化的原因。本文讨论了干湿岩石的导电性机制,包括电动力学效应。在下一节中,将介绍解释岩石破裂引起的低频电磁扰动产生的理论。从理论上研究了地震波传播的同震电磁响应的两种可能机制。接下来,我们将讨论与地震事件有关的大气现象。在这里,我们讨论了描述地震前氡活度变化对大气电导率影响的模型,并检验了解释大气电场和来自地球的红外辐射异常变化的假设,这些异常变化偶尔在地球上和地震活跃区域上空从太空观测到。在下一节中,我们将回顾与地震活动相关的电离层扰动的几种物理机制。其中包括地震波和海啸传播引起的声重力波和大气中垂直声共振引起的电离层扰动。在本文的其余部分,我们将讨论大气中氡活度和垂直孕震流的变化是否会影响电离层。
{"title":"An Overview of Theoretical Studies of Non-Seismic Phenomena Accompanying Earthquakes","authors":"Vadim V. Surkov","doi":"10.1007/s10712-024-09869-1","DOIUrl":"https://doi.org/10.1007/s10712-024-09869-1","url":null,"abstract":"<p>In this paper, we review the theoretical studies of the electromagnetic and other non-seismic phenomena accompanying earthquakes. This field of geophysical research is at the interception of several sciences: electrodynamics, solid-state physics, fracture mechanics, seismology, acoustic-gravity waves, magnetohydrodynamics, ionospheric plasma, etc. In order to make physics of these phenomena as transparent as possible, we use a simplified way of deriving some theoretical results and restrict our analysis to order-of-magnitude estimates. The main emphasis is on those theoretical models which give not only a qualitative, but also a quantitative, description of the observed phenomena. After some introductory material, the review is begun with an analysis of the causes of local changes in the rock conductivity occasionally observed before earthquake occurrence. The mechanisms of electrical conductivity in dry and wet rocks, including the electrokinetic effect, are discussed here. In the next section, the theories explaining the generation of low-frequency electromagnetic perturbations resulting from the rock fracture are covered. Two possible mechanisms of the coseismic electromagnetic response to the propagation of seismic waves are studied theoretically. Hereafter, we deal with atmospheric phenomena, which can be related to seismic events. Here we discuss models describing the effect of pre-seismic changes in radon activity on atmospheric conductivity and examine hypotheses explaining abnormal changes in the atmospheric electric field and in infrared radiation from the Earth, which are occasionally observed on Earth and from space over seismically active regions. In the next section, we review several physical mechanisms of ionospheric perturbations associated with seismic activity. Among them are acoustic-gravity waves resulting from the propagation of seismic waves and tsunamis and ionospheric perturbations caused by vertical acoustic resonance in the atmosphere. In the remainder of this paper, we discuss whether variations in radon activity and vertical seismogenic currents in the atmosphere can affect the ionosphere.</p>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"4 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and Verification of Geodynamic Risk Zones in the Western Carpathians Using Remote Sensing, Geophysical and GNSS Data 利用遥感、地球物理和GNSS数据识别和验证喀尔巴阡山脉西部地球动力危险区
IF 4.6 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-12-19 DOI: 10.1007/s10712-024-09870-8
Lubomil Pospíšil, Dalibor Bartoněk, Jiri Bures, Otakar Svabensky

Previous surveys using the remote sensing (RS) method revealed significant structures in the area of the Western Carpathians. It has not yet been possible to verify and explain the results of these surveys, even though all the phenomena are regional in nature and show many morphological features that clearly indicate recent activity and deformations, including current earthquake foci. The aim of the article was to verify these phenomena and compare them with new findings. A method of combining geomorphological data with satellite image analysis and verification using Global Navigation Satellite Systems (GNSS) and geophysics data was used. In this work, results are presented confirming the existence of a previously identified nonlinear structure—the "gravity nappe" in the western part of the Low Tatras, and the largest tectonic system Muráň—Malcov is analyzed in detail. Similar structures and tectonic zones, on a smaller scale, can also be found in other areas of the Carpathians. For example, the gravity structure in the Lesser Carpathians and the Ukrainian flysch Carpathians or the linear boundaries interpreted as tectonic systems—the Myjava-Subtatrans, Hron and Transgemerian tectonic zones. Recent movement trends have been confirmed by newly unified data from EUREF Permanent Network (EPN) stations and GNSS campaigns carried out in the last two decades in the given area. Both types of analyzed structures are directly related to the occurring foci of earthquakes.

此前使用遥感(RS)方法进行的勘测显示,西喀尔巴阡山脉地区存在重要结构。尽管所有这些现象都是区域性的,并显示出许多形态特征,清楚地表明了近期的活动和变形,包括当前的地震焦点,但仍无法对这些勘测结果进行核实和解释。文章的目的是验证这些现象,并将其与新的发现进行比较。采用的方法是将地貌数据与卫星图像分析相结合,并利用全球导航卫星系统(GNSS)和地球物理数据进行验证。在这项研究中,研究结果证实了之前发现的非线性结构--低塔特拉山西部的 "重力斜坡 "的存在,并详细分析了最大的构造系统 Muráň-Malcov 。在喀尔巴阡山脉的其他地区也可以发现规模较小的类似结构和构造带。例如,小喀尔巴阡山脉和乌克兰飞石喀尔巴阡山脉的重力结构,或被解释为构造系统的线性边界--迈雅瓦-次坦桑构造带、赫龙构造带和外格梅里亚构造带。最近的运动趋势得到了 EUREF 永久网络(EPN)台站和过去二十年在特定地区开展的全球导航卫星系统运动的最新统一数据的证实。所分析的这两类结构都与地震发生中心直接相关。
{"title":"Identification and Verification of Geodynamic Risk Zones in the Western Carpathians Using Remote Sensing, Geophysical and GNSS Data","authors":"Lubomil Pospíšil, Dalibor Bartoněk, Jiri Bures, Otakar Svabensky","doi":"10.1007/s10712-024-09870-8","DOIUrl":"https://doi.org/10.1007/s10712-024-09870-8","url":null,"abstract":"<p>Previous surveys using the remote sensing (RS) method revealed significant structures in the area of the Western Carpathians. It has not yet been possible to verify and explain the results of these surveys, even though all the phenomena are regional in nature and show many morphological features that clearly indicate recent activity and deformations, including current earthquake foci. The aim of the article was to verify these phenomena and compare them with new findings. A method of combining geomorphological data with satellite image analysis and verification using Global Navigation Satellite Systems (GNSS) and geophysics data was used. In this work, results are presented confirming the existence of a previously identified nonlinear structure—the \"gravity nappe\" in the western part of the Low Tatras, and the largest tectonic system Muráň—Malcov is analyzed in detail. Similar structures and tectonic zones, on a smaller scale, can also be found in other areas of the Carpathians. For example, the gravity structure in the Lesser Carpathians and the Ukrainian flysch Carpathians or the linear boundaries interpreted as tectonic systems—the Myjava-Subtatrans, Hron and Transgemerian tectonic zones. Recent movement trends have been confirmed by newly unified data from EUREF Permanent Network (EPN) stations and GNSS campaigns carried out in the last two decades in the given area. Both types of analyzed structures are directly related to the occurring foci of earthquakes.</p>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"7 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Solutions for Forward Modeling of the Earth's Topographic Potential in Spheroidal Harmonics 地球地形势球面谐波正演模拟的有效方法
IF 4.6 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-12-19 DOI: 10.1007/s10712-024-09871-7
Cong Liu, Zhengtao Wang, Fupeng Li, Yu Gao, Yang Xiao

Gravity forward modeling provides important high-resolution information for the development of global gravity models, and can also be applied in many studies, e.g., topographic/isostatic effects computation and Bouguer anomaly maps compilation. In this paper, we present efficient spectral forward modeling approaches in the spheroidal harmonic domain, based on a single layer with constant density or volumetric layers with laterally varying density. With the binomial series expansion applied in spheroidal harmonic gravity forward modeling, the computational cost of these approaches is much lower than similar approaches. In both layering cases, we derive topographic potential models up to degree and order (d/o) 2190 by applying the approaches proposed here. Our methodology is evaluated by comparing these outcome models with other similar topographic potential models derived from spherical harmonic solutions. We find that topographic potentials from spheroidal and spherical harmonic approaches are in great agreement. Finally, the model named EHFM_Earth_7200 with a maximum degree of 7200 was derived by a layer-based approach. The evaluations by ground-truth data show that EHFM_Earth_7200 improves GO_CONS_GCF_2_DIR_R6 by 4% over Antarctica, and improves EGM2008 by ~ 34% over northern Canada. A global map of Bouguer gravity anomaly was also compiled with EHFM_Earth_7200 and EGM2008. As the main conclusion of this work, the new model EHFM_Earth_7200 is beneficial for investigating and modeling the Earth’s external gravity field, the new approaches have comparable accuracy to spherical harmonic approaches and are more suitable for practical use with guaranteed convergence regions because they are performed in the spheroidal harmonic domain.

重力正演模拟为全球重力模型的开发提供了重要的高分辨率信息,也可以应用于地形/均衡效应计算和布格异常图编制等许多研究中。在本文中,我们提出了基于密度恒定的单层或密度横向变化的体积层的球面谐波域中有效的频谱正演模拟方法。将二项式级数展开法应用于球面调和重力正演模拟中,计算量大大低于同类方法。在这两种分层情况下,我们通过应用本文提出的方法推导了高达(d/o) 2190阶和阶的地形势模型。我们的方法是通过将这些结果模型与其他类似的由球谐解导出的地形势模型进行比较来评估的。我们发现从球面和球面调和方法得到的地形势是非常一致的。最后,采用分层方法导出了最大度为7200的EHFM_Earth_7200模型。地面实况资料评价表明,EHFM_Earth_7200在南极洲上空比go_con_gcf_2_dir_r6高4%,在加拿大北部上空比EGM2008高34%。利用EHFM_Earth_7200和EGM2008编制了全球布格重力异常图。本文的主要结论是,EHFM_Earth_7200模型有利于研究和模拟地球外重力场,新方法具有与球谐方法相当的精度,并且由于是在球谐域中进行的,因此更适合具有保证收敛区域的实际应用。
{"title":"Efficient Solutions for Forward Modeling of the Earth's Topographic Potential in Spheroidal Harmonics","authors":"Cong Liu, Zhengtao Wang, Fupeng Li, Yu Gao, Yang Xiao","doi":"10.1007/s10712-024-09871-7","DOIUrl":"https://doi.org/10.1007/s10712-024-09871-7","url":null,"abstract":"<p>Gravity forward modeling provides important high-resolution information for the development of global gravity models, and can also be applied in many studies, e.g., topographic/isostatic effects computation and Bouguer anomaly maps compilation. In this paper, we present efficient spectral forward modeling approaches in the spheroidal harmonic domain, based on a single layer with constant density or volumetric layers with laterally varying density. With the binomial series expansion applied in spheroidal harmonic gravity forward modeling, the computational cost of these approaches is much lower than similar approaches. In both layering cases, we derive topographic potential models up to degree and order (d/o) 2190 by applying the approaches proposed here. Our methodology is evaluated by comparing these outcome models with other similar topographic potential models derived from spherical harmonic solutions. We find that topographic potentials from spheroidal and spherical harmonic approaches are in great agreement. Finally, the model named EHFM_Earth_7200 with a maximum degree of 7200 was derived by a layer-based approach. The evaluations by ground-truth data show that EHFM_Earth_7200 improves GO_CONS_GCF_2_DIR_R6 by 4% over Antarctica, and improves EGM2008 by ~ 34% over northern Canada. A global map of Bouguer gravity anomaly was also compiled with EHFM_Earth_7200 and EGM2008. As the main conclusion of this work, the new model EHFM_Earth_7200 is beneficial for investigating and modeling the Earth’s external gravity field, the new approaches have comparable accuracy to spherical harmonic approaches and are more suitable for practical use with guaranteed convergence regions because they are performed in the spheroidal harmonic domain.</p>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"58 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Issue on Earth’s Changing Water and Energy Cycle 地球不断变化的水和能源循环特刊
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-12-18 DOI: 10.1007/s10712-024-09873-5
Benoit Meyssignac, Sonia Seneviratne, Remy Roca, Graeme L. Stephens, Michael Rast
{"title":"Special Issue on Earth’s Changing Water and Energy Cycle","authors":"Benoit Meyssignac,&nbsp;Sonia Seneviratne,&nbsp;Remy Roca,&nbsp;Graeme L. Stephens,&nbsp;Michael Rast","doi":"10.1007/s10712-024-09873-5","DOIUrl":"10.1007/s10712-024-09873-5","url":null,"abstract":"","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 6","pages":"1715 - 1720"},"PeriodicalIF":4.9,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Machine Learning-Enhanced Joint Inversion of Seismic and Electromagnetic Data 机器学习增强型地震和电磁数据联合反演的最新进展
IF 4.6 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-11-21 DOI: 10.1007/s10712-024-09867-3
Jixiao Ma, Yangfan Deng, Xin Li, Rui Guo, Hongyu Zhou, Maokun Li

Seismic and electromagnetic (EM) imaging are essential tools for characterizing velocity and conductivity. However, the separate inversion of seismic and EM data is challenging due to the noisy measurements, inadequate data collection, and reliance on prior information, consequently resulting in uncertainty and ambiguity of the solutions. Moreover, the two methods are different in sensitivity and spatial resolution, making it difficult to discover consistencies in the inverted models. Joint inversion of seismic and EM data takes advantage of both methods and significantly improves the imaging capability of subsurface structures. In this paper, we review various coupling strategies for the joint inversion of seismic and EM data and highlight the application advances from 1-D to 3-D inversion. Specifically, we investigate the integration of machine learning techniques to tackle ill-posed inverse problems and showcase their effectiveness in coupling. Following this, we construct a deep-learning-based joint inversion workflow and provide a synthetic test to demonstrate its superiority by applying an attention mechanism, which enhances the model’s capability to focus on specific features within the data. This study proves the potential of integrating artificial intelligence into joint inversion and understanding the deep Earth interior by incorporating multiple geophysical data.

地震和电磁(EM)成像是描述速度和传导性的重要工具。然而,由于噪声测量、数据收集不足以及对先验信息的依赖,地震数据和电磁数据的单独反演具有挑战性,从而导致解的不确定性和模糊性。此外,这两种方法的灵敏度和空间分辨率不同,很难发现反演模型的一致性。地震数据和电磁数据的联合反演利用了两种方法的优势,大大提高了地下结构的成像能力。本文回顾了地震数据和电磁数据联合反演的各种耦合策略,并重点介绍了从一维反演到三维反演的应用进展。具体而言,我们研究了机器学习技术的整合,以解决求解困难的反演问题,并展示了其在耦合中的有效性。随后,我们构建了基于深度学习的联合反演工作流程,并提供了一个合成测试,通过应用注意力机制来证明其优越性,该机制增强了模型关注数据中特定特征的能力。这项研究证明了将人工智能整合到联合反演中的潜力,并通过整合多种地球物理数据来理解地球深部内部。
{"title":"Recent Advances in Machine Learning-Enhanced Joint Inversion of Seismic and Electromagnetic Data","authors":"Jixiao Ma, Yangfan Deng, Xin Li, Rui Guo, Hongyu Zhou, Maokun Li","doi":"10.1007/s10712-024-09867-3","DOIUrl":"https://doi.org/10.1007/s10712-024-09867-3","url":null,"abstract":"<p>Seismic and electromagnetic (EM) imaging are essential tools for characterizing velocity and conductivity. However, the separate inversion of seismic and EM data is challenging due to the noisy measurements, inadequate data collection, and reliance on prior information, consequently resulting in uncertainty and ambiguity of the solutions. Moreover, the two methods are different in sensitivity and spatial resolution, making it difficult to discover consistencies in the inverted models. Joint inversion of seismic and EM data takes advantage of both methods and significantly improves the imaging capability of subsurface structures. In this paper, we review various coupling strategies for the joint inversion of seismic and EM data and highlight the application advances from 1-D to 3-D inversion. Specifically, we investigate the integration of machine learning techniques to tackle ill-posed inverse problems and showcase their effectiveness in coupling. Following this, we construct a deep-learning-based joint inversion workflow and provide a synthetic test to demonstrate its superiority by applying an attention mechanism, which enhances the model’s capability to focus on specific features within the data. This study proves the potential of integrating artificial intelligence into joint inversion and understanding the deep Earth interior by incorporating multiple geophysical data.</p>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"30 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extreme Events Contributing to Tipping Elements and Tipping Points 导致临界要素和临界点的极端事件
IF 4.6 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-11-16 DOI: 10.1007/s10712-024-09863-7
A. Romanou, G. C. Hegerl, S. I. Seneviratne, B. Abis, A. Bastos, A. Conversi, A. Landolfi, H. Kim, P. E. Lerner, J. Mekus, B. L. Otto-Bliesner, F. S. R. Pausata, I. Pinto, L. Suarez-Guiterrez

This review article provides a synthesis and perspective on how weather and climate extreme events can play a role in influencing tipping elements and triggering tipping points in the Earth System. An example of a potential critical global tipping point, induced by climate extremes in an increasingly warmer climate, is Amazon rainforest dieback that could be driven by regional increases in droughts and exacerbated by fires, in addition to deforestation. A tipping element associated with the boreal forest might also be vulnerable to heat, drought and fire. An oceanic example is the potential collapse of the Atlantic meridional overturning circulation due to extreme variability in freshwater inputs, while marine heatwaves and high acidity extremes can lead to coral reef collapse. Extreme heat events may furthermore play an important role in ice sheet, glacier and permafrost stability. Regional severe extreme events could also lead to tipping in ecosystems, as well as in human systems, in response to climate drivers. However, substantial scientific uncertainty remains on mechanistic links between extreme events and tipping points. Earth observations are of high relevance to evaluate and constrain those links between extreme events and tipping elements, by determining conditions leading to delayed recovery with a potential for tipping in the atmosphere, on land, in vegetation, and in the ocean. In the subsurface ocean, there is a lack of consistent, synoptic and high frequency observations of changes in both ocean physics and biogeochemistry. This review article shows the importance of considering the interface between extreme events and tipping points, two topics usually addressed in isolation, and the need for continued monitoring to observe early warning signs and to evaluate Earth system response to extreme events as well as improving model skill in simulating extremes, compound extremes and tipping elements.

这篇综述文章综述和透视了天气和气候极端事件如何在影响地球系统的临界要素和触发临界点方面发挥作用。在气候日益变暖的情况下,极端气候事件可能会诱发一个关键的全球临界点,亚马逊雨林的衰退就是一个例子,除了森林砍伐之外,区域性干旱的增加和火灾也会加剧亚马逊雨林的衰退。与北方森林相关的一个临界点也可能易受高温、干旱和火灾的影响。海洋方面的一个例子是,由于淡水输入的极端变化,大西洋经向翻转环流可能崩溃,而海洋热浪和高酸度极端事件可能导致珊瑚礁崩溃。极端热事件还可能在冰盖、冰川和永久冻土的稳定性方面发挥重要作用。区域性严重极端事件也可能导致生态系统以及人类系统在气候驱动因素的作用下发生倾覆。然而,极端事件与临界点之间的机理联系在科学上仍存在很大的不确定性。通过确定大气、陆地、植被和海洋中导致延迟恢复并可能出现临界点的条件,地球观测对于评估和制约极端事件与临界点之间的联系具有重要意义。在次表层海洋中,缺乏对海洋物理和生物地球化学变化的一致、同步和高频观测。这篇综述文章表明,必须考虑极端事件与临界点这两个通常被孤立处理的主题之间的联系,而且需要持续监测,以观察早期预警信号,评估地球系统对极端事件的反应,以及提高模拟极端事件、复合极端事件和临界点的模型技能。
{"title":"Extreme Events Contributing to Tipping Elements and Tipping Points","authors":"A. Romanou, G. C. Hegerl, S. I. Seneviratne, B. Abis, A. Bastos, A. Conversi, A. Landolfi, H. Kim, P. E. Lerner, J. Mekus, B. L. Otto-Bliesner, F. S. R. Pausata, I. Pinto, L. Suarez-Guiterrez","doi":"10.1007/s10712-024-09863-7","DOIUrl":"https://doi.org/10.1007/s10712-024-09863-7","url":null,"abstract":"<p>This review article provides a synthesis and perspective on how weather and climate extreme events can play a role in influencing tipping elements and triggering tipping points in the Earth System. An example of a potential critical global tipping point, induced by climate extremes in an increasingly warmer climate, is Amazon rainforest dieback that could be driven by regional increases in droughts and exacerbated by fires, in addition to deforestation. A tipping element associated with the boreal forest might also be vulnerable to heat, drought and fire. An oceanic example is the potential collapse of the Atlantic meridional overturning circulation due to extreme variability in freshwater inputs, while marine heatwaves and high acidity extremes can lead to coral reef collapse. Extreme heat events may furthermore play an important role in ice sheet, glacier and permafrost stability. Regional severe extreme events could also lead to tipping in ecosystems, as well as in human systems, in response to climate drivers. However, substantial scientific uncertainty remains on mechanistic links between extreme events and tipping points. Earth observations are of high relevance to evaluate and constrain those links between extreme events and tipping elements, by determining conditions leading to delayed recovery with a potential for tipping in the atmosphere, on land, in vegetation, and in the ocean. In the subsurface ocean, there is a lack of consistent, synoptic and high frequency observations of changes in both ocean physics and biogeochemistry. This review article shows the importance of considering the interface between extreme events and tipping points, two topics usually addressed in isolation, and the need for continued monitoring to observe early warning signs and to evaluate Earth system response to extreme events as well as improving model skill in simulating extremes, compound extremes and tipping elements.</p>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"25 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multi-satellite Perspective on “Hot Tower” Characteristics in the Equatorial Trough Zone 多卫星透视赤道槽区的 "热塔 "特征
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-11-06 DOI: 10.1007/s10712-024-09868-2
Juliet Pilewskie, Graeme Stephens, Hanii Takahashi, Tristan L’Ecuyer

In 1979, Herbert Riehl and Joanne Simpson (Malkus) analytically estimated that 1600–2400 undilute convective cores vertically transport energy to the tropopause at any given time within a region where upper-tropospheric energy is only exported from the tropics. The focus of this paper is to update this estimate using modern satellite observations, compare hot tower frequency and intensity characteristics to all deep convective cores that reach the upper troposphere, and document hot tower spatiotemporal variability in relation to precipitation and high cloud properties within the tropical trough zone (between 13 °S and 19 °N). Cloud vertical profiles from CloudSat and CALIPSO measurements supply convective core diameters and proxies for intensity and convective activity, and these proxies are augmented with brightness temperature data from geostationary satellite observations, precipitation information from IMERG, and cloud radiative properties from CERES. Less than 35% of all deep cores are classified as hot towers, and we estimate that 800–1700 hot towers occur at any given time over the course of a day, with the mean maximum core and hot tower frequency occurring at the time of year when peak convective intensity and precipitation occur. Convective objects that contain hot towers frequently contain multiple cores, and the largest systems with five or more distinct cores most frequently occur in regions where organized mesoscale convective systems and the highest climatological mean rain rates are known to occur. Analysis of co-located radar and infrared brightness temperatures reveals that passive observations alone are not sufficient to unambiguously distinguish hot towers using simple brightness temperature thresholds.

1979 年,Herbert Riehl 和 Joanne Simpson(Malkus)通过分析估计,在对流层上层能量仅从热带输出的区域内,任何时候都有 1600-2400 个未稀释的对流核心将能量垂直输送到对流层顶。本文的重点是利用现代卫星观测数据更新这一估计值,将热塔频率和强度特征与所有到达对流层上部的深对流核心进行比较,并记录热塔时空变化与热带槽区(南纬13°至北纬19°之间)降水和高云特性的关系。来自 CloudSat 和 CALIPSO 测量的云垂直剖面提供了对流核心直径以及强度和对流活动的代用指标,这些代用指标通过来自地球静止卫星观测的亮度温度数据、来自 IMERG 的降水信息以及来自 CERES 的云辐射特性得到了补充。不到 35% 的深层核心被归类为热塔,我们估计一天中任何时候都会出现 800-1700 个热塔,平均最大核心和热塔频率出现在一年中对流强度和降水量最高的时候。含有热塔的对流物体经常包含多个核心,而具有五个或五个以上不同核心的最大系统最常出现在已知出现有组织中尺度对流系统和最高气候学平均降雨率的地区。对共定位雷达和红外亮度温度的分析表明,仅靠被动观测不足以用简单的亮度温度阈值明确区分热塔。
{"title":"A Multi-satellite Perspective on “Hot Tower” Characteristics in the Equatorial Trough Zone","authors":"Juliet Pilewskie,&nbsp;Graeme Stephens,&nbsp;Hanii Takahashi,&nbsp;Tristan L’Ecuyer","doi":"10.1007/s10712-024-09868-2","DOIUrl":"10.1007/s10712-024-09868-2","url":null,"abstract":"<div><p>In 1979, Herbert Riehl and Joanne Simpson (Malkus) analytically estimated that 1600–2400 undilute convective cores vertically transport energy to the tropopause at any given time within a region where upper-tropospheric energy is only exported from the tropics. The focus of this paper is to update this estimate using modern satellite observations, compare hot tower frequency and intensity characteristics to all deep convective cores that reach the upper troposphere, and document hot tower spatiotemporal variability in relation to precipitation and high cloud properties within the tropical trough zone (between 13 °S and 19 °N). Cloud vertical profiles from CloudSat and CALIPSO measurements supply convective core diameters and proxies for intensity and convective activity, and these proxies are augmented with brightness temperature data from geostationary satellite observations, precipitation information from IMERG, and cloud radiative properties from CERES. Less than 35% of all deep cores are classified as hot towers, and we estimate that 800–1700 hot towers occur at any given time over the course of a day, with the mean maximum core and hot tower frequency occurring at the time of year when peak convective intensity and precipitation occur. Convective objects that contain hot towers frequently contain multiple cores, and the largest systems with five or more distinct cores most frequently occur in regions where organized mesoscale convective systems and the highest climatological mean rain rates are known to occur. Analysis of co-located radar and infrared brightness temperatures reveals that passive observations alone are not sufficient to unambiguously distinguish hot towers using simple brightness temperature thresholds.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 6","pages":"1933 - 1958"},"PeriodicalIF":4.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-024-09868-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opportunities for Earth Observation to Inform Risk Management for Ocean Tipping Points 地球观测为海洋临界点风险管理提供信息的机会
IF 4.6 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-11-06 DOI: 10.1007/s10712-024-09859-3
Richard A. Wood, Jonathan A. Baker, Grégory Beaugrand, Jacqueline Boutin, Alessandra Conversi, Reik V. Donner, Ivy Frenger, Eric Goberville, Hakase Hayashida, Wolfgang Koeve, Karin Kvale, Angela Landolfi, Wieslaw Maslowski, Andreas Oschlies, Anastasia Romanou, Christopher J. Somes, Thomas F. Stocker, Didier Swingedouw

As climate change continues, the likelihood of passing critical thresholds or tipping points increases. Hence, there is a need to advance the science for detecting such thresholds. In this paper, we assess the needs and opportunities for Earth Observation (EO, here understood to refer to satellite observations) to inform society in responding to the risks associated with ten potential large-scale ocean tipping elements: Atlantic Meridional Overturning Circulation; Atlantic Subpolar Gyre; Beaufort Gyre; Arctic halocline; Kuroshio Large Meander; deoxygenation; phytoplankton; zooplankton; higher level ecosystems (including fisheries); and marine biodiversity. We review current scientific understanding and identify specific EO and related modelling needs for each of these tipping elements. We draw out some generic points that apply across several of the elements. These common points include the importance of maintaining long-term, consistent time series; the need to combine EO data consistently with in situ data types (including subsurface), for example through data assimilation; and the need to reduce or work with current mismatches in resolution (in both directions) between climate models and EO datasets. Our analysis shows that developing EO, modelling and prediction systems together, with understanding of the strengths and limitations of each, provides many promising paths towards monitoring and early warning systems for tipping, and towards the development of the next generation of climate models.

随着气候变化的持续,越过临界阈值或临界点的可能性就越大。因此,有必要推进检测此类临界点的科学研究。在本文中,我们将评估地球观测(EO,此处指卫星观测)的需求和机遇,以便为社会应对与十个潜在大规模海洋临界点相关的风险提供信息:大西洋经向翻转环流、大西洋副极地环流、波弗特环流、北极卤线、黑潮大蜿蜒、脱氧、浮游植物、浮游动物、高层次生态系统(包括渔业)和海洋生物多样性。我们回顾了当前的科学认识,并确定了每个临界要素的具体地球观测和相关建模需求。我们提出了一些适用于多个要素的共同点。这些共同点包括:保持长期、一致的时间序列的重要性;通过数据同化等方式将地球观测数据与原地数据类型(包括次表层)一致结合的必要性;以及减少或解决目前气候模式与地球观测数据集之间分辨率(双向)不匹配问题的必要性。我们的分析表明,在了解每种系统的优势和局限性的情况下,共同开发地球观测、建模和预测系统,为倾覆监测和预警系统以及下一代气候模式的开发提供了许多有希望的途径。
{"title":"Opportunities for Earth Observation to Inform Risk Management for Ocean Tipping Points","authors":"Richard A. Wood, Jonathan A. Baker, Grégory Beaugrand, Jacqueline Boutin, Alessandra Conversi, Reik V. Donner, Ivy Frenger, Eric Goberville, Hakase Hayashida, Wolfgang Koeve, Karin Kvale, Angela Landolfi, Wieslaw Maslowski, Andreas Oschlies, Anastasia Romanou, Christopher J. Somes, Thomas F. Stocker, Didier Swingedouw","doi":"10.1007/s10712-024-09859-3","DOIUrl":"https://doi.org/10.1007/s10712-024-09859-3","url":null,"abstract":"<p>As climate change continues, the likelihood of passing critical thresholds or tipping points increases. Hence, there is a need to advance the science for detecting such thresholds. In this paper, we assess the needs and opportunities for Earth Observation (EO, here understood to refer to satellite observations) to inform society in responding to the risks associated with ten potential large-scale ocean tipping elements: Atlantic Meridional Overturning Circulation; Atlantic Subpolar Gyre; Beaufort Gyre; Arctic halocline; Kuroshio Large Meander; deoxygenation; phytoplankton; zooplankton; higher level ecosystems (including fisheries); and marine biodiversity. We review current scientific understanding and identify specific EO and related modelling needs for each of these tipping elements. We draw out some generic points that apply across several of the elements. These common points include the importance of maintaining long-term, consistent time series; the need to combine EO data consistently with in situ data types (including subsurface), for example through data assimilation; and the need to reduce or work with current mismatches in resolution (in both directions) between climate models and EO datasets. Our analysis shows that developing EO, modelling and prediction systems together, with understanding of the strengths and limitations of each, provides many promising paths towards monitoring and early warning systems for tipping, and towards the development of the next generation of climate models.</p>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"79 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Abrupt Decline in Global Terrestrial Water Storage and Its Relationship with Sea Level Change 全球陆地蓄水量骤减及其与海平面变化的关系
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-11-04 DOI: 10.1007/s10712-024-09860-w
Matthew Rodell, Anne Barnoud, Franklin R. Robertson, Richard P. Allan, Ashley Bellas-Manley, Michael G. Bosilovich, Don Chambers, Felix Landerer, Bryant Loomis, R. Steven Nerem, Mary Michael O’Neill, David Wiese, Sonia I. Seneviratne

As observed by the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow On (GRACE-FO) missions, global terrestrial water storage (TWS), excluding ice sheets and glaciers, declined rapidly between May 2014 and March 2016. By 2023, it had not yet recovered, with the upper end of its range remaining 1 cm equivalent height of water below the upper end of the earlier range. Beginning with a record-setting drought in northeastern South America, a series of droughts on five continents helped to prevent global TWS from rebounding. While back-to-back El Niño events are largely responsible for the South American drought and others in the 2014–2016 timeframe, the possibility exists that global warming has contributed to a net drying of the land since then, through enhanced evapotranspiration and increasing frequency and intensity of drought. Corollary to the decline in global TWS since 2015 has been a rise in barystatic sea level (i.e., global mean ocean mass). However, we find no evidence that it is anything other than a coincidence that, also in 2015, two estimates of barystatic sea level change, one from GRACE/FO and the other from a combination of satellite altimetry and Argo float ocean temperature measurements, began to diverge. Herein, we discuss both the mechanisms that account for the abrupt decline in terrestrial water storage and the possible explanations for the divergence of the barystatic sea level change estimates.

根据重力恢复与气候实验(GRACE)和重力恢复与气候实验后续任务(GRACE-FO)的观测,2014年5月至2016年3月期间,全球陆地储水量(TWS)(不包括冰原和冰川)迅速下降。到 2023 年,它仍未恢复,其范围的上限仍比早期范围的上限低 1 厘米等效水高。从南美洲东北部创纪录的干旱开始,五大洲的一系列干旱阻碍了全球 TWS 的反弹。虽然接连发生的厄尔尼诺现象在很大程度上造成了南美洲的干旱以及 2014-2016 年期间的其他干旱,但全球变暖也有可能通过增强蒸散作用以及增加干旱的频率和强度,造成此后土地的净干燥。自 2015 年以来,全球 TWS 下降的必然结果是重力海平面(即全球平均海洋质量)的上升。然而,我们没有发现任何证据表明,同样在 2015 年,对重力静态海平面变化的两个估计值(一个来自 GRACE/FO,另一个来自卫星测高和 Argo 浮漂海洋温度测量的组合)开始出现分歧,这绝非巧合。在此,我们将讨论陆地储水量突然下降的机制,以及重力静态海平面变化估计值出现分歧的可能原因。
{"title":"An Abrupt Decline in Global Terrestrial Water Storage and Its Relationship with Sea Level Change","authors":"Matthew Rodell,&nbsp;Anne Barnoud,&nbsp;Franklin R. Robertson,&nbsp;Richard P. Allan,&nbsp;Ashley Bellas-Manley,&nbsp;Michael G. Bosilovich,&nbsp;Don Chambers,&nbsp;Felix Landerer,&nbsp;Bryant Loomis,&nbsp;R. Steven Nerem,&nbsp;Mary Michael O’Neill,&nbsp;David Wiese,&nbsp;Sonia I. Seneviratne","doi":"10.1007/s10712-024-09860-w","DOIUrl":"10.1007/s10712-024-09860-w","url":null,"abstract":"<div><p>As observed by the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow On (GRACE-FO) missions, global terrestrial water storage (TWS), excluding ice sheets and glaciers, declined rapidly between May 2014 and March 2016. By 2023, it had not yet recovered, with the upper end of its range remaining 1 cm equivalent height of water below the upper end of the earlier range. Beginning with a record-setting drought in northeastern South America, a series of droughts on five continents helped to prevent global TWS from rebounding. While back-to-back El Niño events are largely responsible for the South American drought and others in the 2014–2016 timeframe, the possibility exists that global warming has contributed to a net drying of the land since then, through enhanced evapotranspiration and increasing frequency and intensity of drought. Corollary to the decline in global TWS since 2015 has been a rise in barystatic sea level (i.e., global mean ocean mass). However, we find no evidence that it is anything other than a coincidence that, also in 2015, two estimates of barystatic sea level change, one from GRACE/FO and the other from a combination of satellite altimetry and Argo float ocean temperature measurements, began to diverge. Herein, we discuss both the mechanisms that account for the abrupt decline in terrestrial water storage and the possible explanations for the divergence of the barystatic sea level change estimates.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 6","pages":"1875 - 1902"},"PeriodicalIF":4.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-024-09860-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Surveys in Geophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1