{"title":"Computational Model for the Detection of Diabetic Retinopathy in 2-D Color Fundus Retina Scan.","authors":"Akshit Aggarwal, Shruti Jain, Himanshu Jindal","doi":"10.2174/0115734056248183231010111937","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetic Retinopathy (DR) is a growing problem in Asian countries. DR accounts for 5% to 7% of all blindness in the entire area. In India, the record of DR-affected patients will reach around 79.4 million by 2030.</p><p><strong>Aims: </strong>The main objective of the investigation is to utilize 2-D colored fundus retina scans to determine if an individual possesses DR or not. In this regard, Engineering-based techniques such as deep learning and neural networks play a methodical role in fighting against this fatal disease.</p><p><strong>Methods: </strong>In this research work, a Computational Model for detecting DR using Convolutional Neural Network (DRCNN) is proposed. This method contrasts the fundus retina scans of the DR-afflicted eye with the usual human eyes. Using CNN and layers like Conv2D, Pooling, Dense, Flatten, and Dropout, the model aids in comprehending the scan's curve and color-based features. For training and error reduction, the Visual Geometry Group (VGG-16) model and Adaptive Moment Estimation Optimizer are utilized.</p><p><strong>Results: </strong>The variations in a dataset like 50%, 60%, 70%, 80%, and 90% images are reserved for the training phase, and the rest images are reserved for the testing phase. In the proposed model, the VGG-16 model comprises 138M parameters. The accuracy is achieved maximum rate of 90% when the training dataset is reserved at 80%. The model was validated using other datasets.</p><p><strong>Conclusion: </strong>The suggested contribution to research determines conclusively whether the provided OCT scan utilizes an effective method for detecting DRaffected individuals within just a few moments.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056248183231010111937","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Diabetic Retinopathy (DR) is a growing problem in Asian countries. DR accounts for 5% to 7% of all blindness in the entire area. In India, the record of DR-affected patients will reach around 79.4 million by 2030.
Aims: The main objective of the investigation is to utilize 2-D colored fundus retina scans to determine if an individual possesses DR or not. In this regard, Engineering-based techniques such as deep learning and neural networks play a methodical role in fighting against this fatal disease.
Methods: In this research work, a Computational Model for detecting DR using Convolutional Neural Network (DRCNN) is proposed. This method contrasts the fundus retina scans of the DR-afflicted eye with the usual human eyes. Using CNN and layers like Conv2D, Pooling, Dense, Flatten, and Dropout, the model aids in comprehending the scan's curve and color-based features. For training and error reduction, the Visual Geometry Group (VGG-16) model and Adaptive Moment Estimation Optimizer are utilized.
Results: The variations in a dataset like 50%, 60%, 70%, 80%, and 90% images are reserved for the training phase, and the rest images are reserved for the testing phase. In the proposed model, the VGG-16 model comprises 138M parameters. The accuracy is achieved maximum rate of 90% when the training dataset is reserved at 80%. The model was validated using other datasets.
Conclusion: The suggested contribution to research determines conclusively whether the provided OCT scan utilizes an effective method for detecting DRaffected individuals within just a few moments.
期刊介绍:
Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques.
The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.