CERVIXNET: An Efficient Approach for the Detection and Classifications of the Cervigram Images Using Modified Deep Learning Architecture.

IF 1.1 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Current Medical Imaging Reviews Pub Date : 2025-01-23 DOI:10.2174/0115734056343690250116020310
N Karthikeyan, Gokul Chandrasekaran, S Sudha
{"title":"CERVIXNET: An Efficient Approach for the Detection and Classifications of the Cervigram Images Using Modified Deep Learning Architecture.","authors":"N Karthikeyan, Gokul Chandrasekaran, S Sudha","doi":"10.2174/0115734056343690250116020310","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The earlier detection of cervical cancer in women patients can save human life. This article proposes a novel methodology for detecting abnormal cervigram images from healthy cervigram images and segments the cancer regions in the abnormal cervigram images using the deep learning method. The conventional deep learning architecture has been modified into the proposed CervixNet architecture to improve the cervical cancer detection rate.</p><p><strong>Methods: </strong>This methodology is constituted of a training and testing process, where the training process generates the training sequences individually for healthy cervigram images and the cancer case cervigram images. The testing process tests the cervigram images into either a healthy or cancer cases using the training sequences generated through the training process. During the testing process of the proposed system, the cancer segmentation algorithm was applied on the abnormal cervigram image to detect and segment the pixels belonging to cancer. Finally, the performance has been carried out on the segmented cancer cervical images for the ground truth images. This proposed methodology has been evaluated on the cervigrams on IMODT and Guanacaste databases. Its performance has been analyzed concerning cancer pixel sensitivity, cancer pixel specificity and cancer pixel accuracy.</p><p><strong>Results: </strong>This research work obtains 98.69% Cancer Pixel Sensitivity (CPS), 98.76% Cancer Pixel Specificity (CPSP), and 99.27% Cancer Pixel Accuracy (CPA) for the set of cervigram images in the IMODT database. This research work obtains 99.22% CPS, 99.03% CPSP, and 99.01% CPA for the set of cervigram images in Guanacaste database.</p><p><strong>Conclusion: </strong>These experimental results of the proposed work have been significantly compared with the state-of-the-art methods and show the significance and novelty of the proposed works.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056343690250116020310","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The earlier detection of cervical cancer in women patients can save human life. This article proposes a novel methodology for detecting abnormal cervigram images from healthy cervigram images and segments the cancer regions in the abnormal cervigram images using the deep learning method. The conventional deep learning architecture has been modified into the proposed CervixNet architecture to improve the cervical cancer detection rate.

Methods: This methodology is constituted of a training and testing process, where the training process generates the training sequences individually for healthy cervigram images and the cancer case cervigram images. The testing process tests the cervigram images into either a healthy or cancer cases using the training sequences generated through the training process. During the testing process of the proposed system, the cancer segmentation algorithm was applied on the abnormal cervigram image to detect and segment the pixels belonging to cancer. Finally, the performance has been carried out on the segmented cancer cervical images for the ground truth images. This proposed methodology has been evaluated on the cervigrams on IMODT and Guanacaste databases. Its performance has been analyzed concerning cancer pixel sensitivity, cancer pixel specificity and cancer pixel accuracy.

Results: This research work obtains 98.69% Cancer Pixel Sensitivity (CPS), 98.76% Cancer Pixel Specificity (CPSP), and 99.27% Cancer Pixel Accuracy (CPA) for the set of cervigram images in the IMODT database. This research work obtains 99.22% CPS, 99.03% CPSP, and 99.01% CPA for the set of cervigram images in Guanacaste database.

Conclusion: These experimental results of the proposed work have been significantly compared with the state-of-the-art methods and show the significance and novelty of the proposed works.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
246
审稿时长
1 months
期刊介绍: Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques. The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.
期刊最新文献
I-Brainer: Artificial intelligence/Internet of Things (AI/IoT)-Powered Detection of Brain Cancer. A Comparison of the Diagnostic Value of Multiorgan Point-of-care Ultrasound between High-risk and Medium-to-low-risk Pulmonary Embolism Cases. Morphology and Distribution of Fat Globules in Osteomyelitis on Magnetic Resonance Imaging. Sonographic Features of Juvenile Fibroadenoma in Children-a Retrospective Study. CERVIXNET: An Efficient Approach for the Detection and Classifications of the Cervigram Images Using Modified Deep Learning Architecture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1