{"title":"Sample size estimation for recurrent event data using multifrailty and multilevel survival models.","authors":"Derek Dinart, Carine Bellera, Virginie Rondeau","doi":"10.1080/10543406.2024.2310306","DOIUrl":null,"url":null,"abstract":"<p><p>In epidemiology and clinical research, recurrent events refer to individuals who are likely to experience transient clinical events repeatedly over an observation period. Examples include hospitalizations in patients with heart failure, fractures in osteoporosis studies and the occurrence of new lesions in oncology. We provided an in-depth analysis of the sample size required for the analysis of recurrent time-to-event data using multifrailty or multilevel survival models. We covered the topic from the simple shared frailty model to models with hierarchical or joint frailties. We relied on a Wald-type test statistic to estimate the sample size assuming either a single or multiple endpoints. Simulations revealed that the sample size increased as heterogeneity increased. We also observed that it was more attractive to include more patients and reduce the duration of follow-up than to include fewer patients and increase the duration of follow-up to obtain the number of events required. Each model investigated can address the question of the number of subjects for recurrent events. However, depending on the research question, one model will be more suitable than another. We illustrated our methodology with the AFFIRM-AHF trial investigating the effect of intravenous ferric carboxymaltose in patients hospitalised for acute heart failure.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"241-256"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2310306","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
In epidemiology and clinical research, recurrent events refer to individuals who are likely to experience transient clinical events repeatedly over an observation period. Examples include hospitalizations in patients with heart failure, fractures in osteoporosis studies and the occurrence of new lesions in oncology. We provided an in-depth analysis of the sample size required for the analysis of recurrent time-to-event data using multifrailty or multilevel survival models. We covered the topic from the simple shared frailty model to models with hierarchical or joint frailties. We relied on a Wald-type test statistic to estimate the sample size assuming either a single or multiple endpoints. Simulations revealed that the sample size increased as heterogeneity increased. We also observed that it was more attractive to include more patients and reduce the duration of follow-up than to include fewer patients and increase the duration of follow-up to obtain the number of events required. Each model investigated can address the question of the number of subjects for recurrent events. However, depending on the research question, one model will be more suitable than another. We illustrated our methodology with the AFFIRM-AHF trial investigating the effect of intravenous ferric carboxymaltose in patients hospitalised for acute heart failure.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.