BOP2-TE: Bayesian optimal phase 2 design for jointly monitoring efficacy and toxicity with application to dose optimization.

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY Journal of Biopharmaceutical Statistics Pub Date : 2024-11-24 DOI:10.1080/10543406.2024.2429481
Kai Chen, Heng Zhou, J Jack Lee, Ying Yuan
{"title":"BOP2-TE: Bayesian optimal phase 2 design for jointly monitoring efficacy and toxicity with application to dose optimization.","authors":"Kai Chen, Heng Zhou, J Jack Lee, Ying Yuan","doi":"10.1080/10543406.2024.2429481","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a Bayesian optimal phase 2 design for jointly monitoring efficacy and toxicity, referred to as BOP2-TE, to improve the operating characteristics of the BOP2 design proposed by Zhou. BOP2-TE utilizes a Dirichlet-multinomial model to jointly model the distribution of toxicity and efficacy endpoints, making go/no-go decisions based on the posterior probability of toxicity and futility. In comparison to the original BOP2 and other existing designs, BOP2-TE offers the advantage of providing rigorous type I error control in cases where the treatment is toxic and futile, effective but toxic, or safe but futile, while optimizing power when the treatment is effective and safe. As a result, BOP2-TE enhances trial safety and efficacy. We also explore the incorporation of BOP2-TE into multiple-dose randomized trials for dose optimization, and consider a seamless design that integrates phase I dose finding with phase II randomized dose optimization. BOP2-TE is user-friendly, as its decision boundary can be determined prior to the trial's onset. Simulations demonstrate that BOP2-TE possesses desirable operating characteristics. We have developed a user-friendly web application as part of the BOP2 app, which is freely available at https://www.trialdesign.org.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-16"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2429481","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a Bayesian optimal phase 2 design for jointly monitoring efficacy and toxicity, referred to as BOP2-TE, to improve the operating characteristics of the BOP2 design proposed by Zhou. BOP2-TE utilizes a Dirichlet-multinomial model to jointly model the distribution of toxicity and efficacy endpoints, making go/no-go decisions based on the posterior probability of toxicity and futility. In comparison to the original BOP2 and other existing designs, BOP2-TE offers the advantage of providing rigorous type I error control in cases where the treatment is toxic and futile, effective but toxic, or safe but futile, while optimizing power when the treatment is effective and safe. As a result, BOP2-TE enhances trial safety and efficacy. We also explore the incorporation of BOP2-TE into multiple-dose randomized trials for dose optimization, and consider a seamless design that integrates phase I dose finding with phase II randomized dose optimization. BOP2-TE is user-friendly, as its decision boundary can be determined prior to the trial's onset. Simulations demonstrate that BOP2-TE possesses desirable operating characteristics. We have developed a user-friendly web application as part of the BOP2 app, which is freely available at https://www.trialdesign.org.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BOP2-TE:贝叶斯优化 2 期设计,用于联合监测疗效和毒性,并应用于剂量优化。
我们提出了一种联合监测疗效和毒性的贝叶斯最优 2 期设计(简称 BOP2-TE),以改进 Zhou 提出的 BOP2 设计的操作特性。BOP2-TE 利用 Dirichlet-Multinomial 模型对毒性终点和疗效终点的分布进行联合建模,根据毒性和无效的后验概率做出去/不去的决定。与最初的 BOP2 和其他现有设计相比,BOP2-TE 的优势在于在治疗有毒但无用、有效但有毒或安全但无用的情况下提供严格的 I 型误差控制,同时在治疗有效且安全的情况下优化功率。因此,BOP2-TE 提高了试验的安全性和有效性。我们还探讨了将 BOP2-TE 纳入多剂量随机试验以优化剂量的问题,并考虑了将 I 期剂量发现与 II 期随机剂量优化相结合的无缝设计。BOP2-TE 易于使用,因为其决策边界可在试验开始前确定。模拟结果表明,BOP2-TE 具有理想的运行特性。我们开发了一个用户友好型网络应用程序,作为 BOP2 应用程序的一部分,可在 https://www.trialdesign.org 免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
期刊最新文献
Sequential monitoring of cancer immunotherapy trial with random delayed treatment effect. Directed Acyclic Graph Assisted Method For Estimating Average Treatment Effect. Bayesian phase II adaptive randomization by jointly modeling efficacy and toxicity as time-to-event outcomes. Interval estimation of relative risks for combined unilateral and bilateral correlated data. Sample size estimation for recurrent event data using multifrailty and multilevel survival models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1