Long Chen, Karl J Niklas, Zhenhui Ding, Johan Gielis, Qinyue Miao, Meng Lian, Peijian Shi
{"title":"Scaling Relationships among the Mass of Eggshell, Albumen, and Yolk in Six Precocial Birds.","authors":"Long Chen, Karl J Niklas, Zhenhui Ding, Johan Gielis, Qinyue Miao, Meng Lian, Peijian Shi","doi":"10.1093/icb/icae001","DOIUrl":null,"url":null,"abstract":"<p><p>The proportions in the size of the avian egg albumen, yolk, and shell are crucial for understanding bird survival and reproductive success because their relationships with volume and surface area can affect ecological and life history strategies. Prior studies have focused on the relationship between the albumen and the yolk, but little is known about the scaling relationship between eggshell mass and shape and the mass of the albumen and the yolk. Toward this end, 691 eggs of six precocial species were examined, and their 2-D egg profiles were photographed and digitized. The explicit Preston equation, which assumes bilateral symmetrical geometry, was used to fit the 2-D egg profiles and to calculate surface areas and volumes based on the hypothesis that eggs can be treated as solids of profile revolution. The scaling relationships of eggshell mass (Ms), albumen mass (Ma), and yolk mass (My), as well as the surface area (S), volume (V), and total mass (Mt) were determined. The explicit Preston equation was validated in describing the 2-D egg profiles. The scaling exponents of Ma vs. Ms, My vs. Ms, and My vs. Ma were smaller than unity, indicating that increases in Ma and My fail to keep pace with increases in Ms, and that increases in My fail to keep pace with increases in Ma. Therefore, increases in unit nutrient contents (i.e., the yolk) involve disproportionately larger increases in eggshell mass and disproportionately larger increases in albumen mass. The data also revealed a 2/3-power scaling relationship between S and V for each species, that is, the simple Euclidean geometry is obeyed. These findings help to inform our understanding of avian egg construction and reveal evolutionary interspecific trends in the scaling of egg shape, volume, mass, and mass allocation.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae001","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The proportions in the size of the avian egg albumen, yolk, and shell are crucial for understanding bird survival and reproductive success because their relationships with volume and surface area can affect ecological and life history strategies. Prior studies have focused on the relationship between the albumen and the yolk, but little is known about the scaling relationship between eggshell mass and shape and the mass of the albumen and the yolk. Toward this end, 691 eggs of six precocial species were examined, and their 2-D egg profiles were photographed and digitized. The explicit Preston equation, which assumes bilateral symmetrical geometry, was used to fit the 2-D egg profiles and to calculate surface areas and volumes based on the hypothesis that eggs can be treated as solids of profile revolution. The scaling relationships of eggshell mass (Ms), albumen mass (Ma), and yolk mass (My), as well as the surface area (S), volume (V), and total mass (Mt) were determined. The explicit Preston equation was validated in describing the 2-D egg profiles. The scaling exponents of Ma vs. Ms, My vs. Ms, and My vs. Ma were smaller than unity, indicating that increases in Ma and My fail to keep pace with increases in Ms, and that increases in My fail to keep pace with increases in Ma. Therefore, increases in unit nutrient contents (i.e., the yolk) involve disproportionately larger increases in eggshell mass and disproportionately larger increases in albumen mass. The data also revealed a 2/3-power scaling relationship between S and V for each species, that is, the simple Euclidean geometry is obeyed. These findings help to inform our understanding of avian egg construction and reveal evolutionary interspecific trends in the scaling of egg shape, volume, mass, and mass allocation.
期刊介绍:
Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.