Harnessing cytokine-induced killer cells to accelerate diabetic wound healing: an approach to regulating post-traumatic inflammation.

IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Regenerative Biomaterials Pub Date : 2024-01-09 eCollection Date: 2024-01-01 DOI:10.1093/rb/rbad116
Yixi Yang, Cheng Zhang, Yuan Jiang, Yijun He, Jiawei Cai, Lin Liang, Zhaohuan Chen, Sicheng Pan, Chu Hua, Keke Wu, Le Wang, Zhiyong Zhang
{"title":"Harnessing cytokine-induced killer cells to accelerate diabetic wound healing: an approach to regulating post-traumatic inflammation.","authors":"Yixi Yang, Cheng Zhang, Yuan Jiang, Yijun He, Jiawei Cai, Lin Liang, Zhaohuan Chen, Sicheng Pan, Chu Hua, Keke Wu, Le Wang, Zhiyong Zhang","doi":"10.1093/rb/rbad116","DOIUrl":null,"url":null,"abstract":"<p><p>Impaired immunohomeostasis in diabetic wounds prolongs inflammation and cytokine dysfunction, thus, delaying or preventing wound-surface healing. Extensive clinical studies have been conducted on cytokine-induced killer (CIK) cells recently, as they can be easily proliferated using a straightforward, inexpensive protocol. Therefore, the function of CIK cells in regulating inflammatory environments has been drawing attention for clinical management. Throughout the current investigation, we discovered the regenerative capacity of these cells in the challenging environment of wounds that heal poorly due to diabetes. We demonstrated that the intravenous injection of CIK cells can re-establish a proregenerative inflammatory microenvironment, promote vascularization and, ultimately, accelerate skin healing in diabetic mice. The results indicated that CIK cell treatment affects macrophage polarization and restores the function of regenerative cells under hyperglycemic conditions. This novel cellular therapy offers a promising intervention for clinical applications through specific inflammatory regulation functions.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbad116"},"PeriodicalIF":5.6000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10850840/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbad116","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Impaired immunohomeostasis in diabetic wounds prolongs inflammation and cytokine dysfunction, thus, delaying or preventing wound-surface healing. Extensive clinical studies have been conducted on cytokine-induced killer (CIK) cells recently, as they can be easily proliferated using a straightforward, inexpensive protocol. Therefore, the function of CIK cells in regulating inflammatory environments has been drawing attention for clinical management. Throughout the current investigation, we discovered the regenerative capacity of these cells in the challenging environment of wounds that heal poorly due to diabetes. We demonstrated that the intravenous injection of CIK cells can re-establish a proregenerative inflammatory microenvironment, promote vascularization and, ultimately, accelerate skin healing in diabetic mice. The results indicated that CIK cell treatment affects macrophage polarization and restores the function of regenerative cells under hyperglycemic conditions. This novel cellular therapy offers a promising intervention for clinical applications through specific inflammatory regulation functions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用细胞因子诱导的杀伤细胞加速糖尿病伤口愈合:一种调节创伤后炎症的方法。
糖尿病伤口的免疫稳态受损会延长炎症和细胞因子功能障碍的时间,从而延迟或阻止伤口表面的愈合。由于细胞因子诱导的杀伤细胞(CIK)可以用简单、廉价的方法轻松增殖,最近对其进行了广泛的临床研究。因此,CIK细胞在调节炎症环境中的功能一直备受临床关注。在本次研究中,我们发现了这些细胞在糖尿病导致伤口愈合不良的挑战性环境中的再生能力。我们证实,静脉注射 CIK 细胞可以重建有利于再生的炎症微环境,促进血管生成,最终加速糖尿病小鼠皮肤的愈合。结果表明,在高血糖条件下,CIK 细胞治疗会影响巨噬细胞的极化,并恢复再生细胞的功能。这种新型细胞疗法通过特定的炎症调节功能,为临床应用提供了一种前景广阔的干预手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Regenerative Biomaterials
Regenerative Biomaterials Materials Science-Biomaterials
CiteScore
7.90
自引率
16.40%
发文量
92
审稿时长
10 weeks
期刊介绍: Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.
期刊最新文献
Correction to: Nanocarrier of Pin1 inhibitor based on supercritical fluid technology inhibits cancer metastasis by blocking multiple signaling pathways. Cell-microsphere based living microhybrids for osteogenesis regulating to boosting biomineralization. Determination of DNA content as quality control in decellularized tissues: challenges and pitfalls. Injectable drug-loaded thermosensitive hydrogel delivery system for protecting retina ganglion cells in traumatic optic neuropathy. Correction to: Constructing a highly efficient multifunctional carbon quantum dot platform for the treatment of infectious wounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1