A novel approach for modelling voltage hysteresis in lithium-ion batteries demonstrated for silicon graphite anodes: Comparative evaluation against established Preisach and Plett model

IF 5.4 Q2 CHEMISTRY, PHYSICAL Journal of Power Sources Advances Pub Date : 2024-02-08 DOI:10.1016/j.powera.2024.100139
Jakob Schmitt, Ivo Horstkötter, Bernard Bäker
{"title":"A novel approach for modelling voltage hysteresis in lithium-ion batteries demonstrated for silicon graphite anodes: Comparative evaluation against established Preisach and Plett model","authors":"Jakob Schmitt,&nbsp;Ivo Horstkötter,&nbsp;Bernard Bäker","doi":"10.1016/j.powera.2024.100139","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-ion batteries with silicon-graphite composite anodes feature an asymmetric and direction-dependent voltage hysteresis. Upon comparing established hysteresis models from literature, it was found that a separate modelling of charge and discharge direction is required for both the operator-based Preisach model and the differential equation-based one-state model, often referred to as Plett model. This paper presents the first bidirectional implementation of the one-state hysteresis model based on extensive measurements of first-order reversal branches of a <em>Si</em>/<em>C</em> NMC cell. The approach accounts for directionality but cannot deal with the complexity of the hysteresis traverses, so an extension of the Preisach model is discussed and found to be infeasible. This justifies the development of a novel hysteresis model, the trajectory correction hysteresis (TCH) model, that fulfils the identified requirements for bidirectionality, closed-loop property and direct data fit and can be generally applied to any cell chemistry. The TCH model considers the traverse starting point, which allows for the unambiguous definition of hysteresis states and enables the simulation of complex trajectories due to two correction mechanisms. The static and dynamic current profiles in complex hysteresis scenarios demonstrate superior performance with 4.5 mV mae compared to Preisach (19.6 mV mae) and Plett (11.7 mV mae) models.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"26 ","pages":"Article 100139"},"PeriodicalIF":5.4000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248524000052/pdfft?md5=a12cad96f18322b34cb9fd4305271905&pid=1-s2.0-S2666248524000052-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248524000052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries with silicon-graphite composite anodes feature an asymmetric and direction-dependent voltage hysteresis. Upon comparing established hysteresis models from literature, it was found that a separate modelling of charge and discharge direction is required for both the operator-based Preisach model and the differential equation-based one-state model, often referred to as Plett model. This paper presents the first bidirectional implementation of the one-state hysteresis model based on extensive measurements of first-order reversal branches of a Si/C NMC cell. The approach accounts for directionality but cannot deal with the complexity of the hysteresis traverses, so an extension of the Preisach model is discussed and found to be infeasible. This justifies the development of a novel hysteresis model, the trajectory correction hysteresis (TCH) model, that fulfils the identified requirements for bidirectionality, closed-loop property and direct data fit and can be generally applied to any cell chemistry. The TCH model considers the traverse starting point, which allows for the unambiguous definition of hysteresis states and enables the simulation of complex trajectories due to two correction mechanisms. The static and dynamic current profiles in complex hysteresis scenarios demonstrate superior performance with 4.5 mV mae compared to Preisach (19.6 mV mae) and Plett (11.7 mV mae) models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅石墨负极锂离子电池电压滞后建模新方法:与已建立的 Preisach 和 Plett 模型的比较评估
采用硅-石墨复合阳极的锂离子电池具有非对称和随方向变化的电压滞后现象。比较文献中已有的磁滞模型后发现,基于算子的普雷萨赫模型和基于微分方程的单态模型(通常称为普雷特模型)都需要对充电和放电方向进行单独建模。本文基于对 Si/C NMC 电池一阶反向分支的广泛测量,首次提出了单态磁滞模型的双向实现方法。这种方法考虑到了方向性,但无法处理磁滞穿越的复杂性,因此讨论了普雷沙赫模型的扩展,发现这种方法并不可行。因此,我们开发了一种新的滞后模型--轨迹校正滞后(TCH)模型,它能满足双向性、闭环特性和直接数据拟合等已确定的要求,并可普遍应用于任何细胞化学。TCH 模型考虑了横移起点,可以明确定义滞后状态,并通过两种校正机制模拟复杂轨迹。与 Preisach(19.6 mV mae)和 Plett(11.7 mV mae)模型相比,4.5 mV mae 模型在复杂滞后情况下的静态和动态电流曲线表现出更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
期刊最新文献
The effect of sidewall rupture on the propensity for thermal runaway propagation in a small lithium-ion battery module Synergetic effect of double-layer coating on silicon nanoparticles for high-performance lithium-ion battery anodes Formulating PEO-polycarbonate blends as solid polymer electrolytes by solvent-free extrusion Enhancing performance and sustainability of lithium manganese oxide cathodes with a poly(ionic liquid) binder and ionic liquid electrolyte Enhancing the stability of sodium-ion capacitors by introducing glyoxylic-acetal based electrolyte
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1