Design and analysis of novel La:HfO2 gate stacked ferroelectric tunnel FET for non-volatile memory applications

Neha Paras , Shiromani Balmukund Rahi , Abhishek Kumar Upadhyay , Manisha Bharti , Young Suh Song
{"title":"Design and analysis of novel La:HfO2 gate stacked ferroelectric tunnel FET for non-volatile memory applications","authors":"Neha Paras ,&nbsp;Shiromani Balmukund Rahi ,&nbsp;Abhishek Kumar Upadhyay ,&nbsp;Manisha Bharti ,&nbsp;Young Suh Song","doi":"10.1016/j.memori.2024.100101","DOIUrl":null,"url":null,"abstract":"<div><p>Recent experimental studies have shown lanthanum-doped hafnium oxide (La:HfO<sub>2</sub>) possessing ferroelectric properties. This material is of special interest since it is based on lead-free, simple binary oxide of HfO<sub>2</sub>, and has excellent endurance property (1 × 10<sup>9</sup> field cycles without fatigue. There exists substantial information about the material aspects of La:HfO<sub>2</sub> but it lacks proven application potential for CMOS-compatible low-power memory design. In this work, 10 % La metal cation fraction of HfO<sub>2</sub> (La:HfO<sub>2</sub>) is proposed as the gate stack material in tunnel FET (TFET) for its potential as a memory device. 2D device simulations are carried out to show that the proposed ferroelectric TFET (FeTFET) provides the largest memory window (MW) as compared to present perovskite ferroelectric materials such as PZT, SBT (SrBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub>) and silicon doped (4.6 % Si in HfO<sub>2</sub>) hafnium oxide (Si:HfO<sub>2</sub>). The larger window is attributed to greater polarization, and the calculation of MW is quantified by the shift in threshold voltage (V<sub>th</sub>). The simulations carried out in this work suggest that La:HfO<sub>2</sub> can be adopted as a potential ferroelectric material to target low-power FeTFET design at significantly reduced ferroelectric layer thickness.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"7 ","pages":"Article 100101"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773064624000033/pdfft?md5=22395a41426eb2f704ddea26a21f4352&pid=1-s2.0-S2773064624000033-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memories - Materials, Devices, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773064624000033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent experimental studies have shown lanthanum-doped hafnium oxide (La:HfO2) possessing ferroelectric properties. This material is of special interest since it is based on lead-free, simple binary oxide of HfO2, and has excellent endurance property (1 × 109 field cycles without fatigue. There exists substantial information about the material aspects of La:HfO2 but it lacks proven application potential for CMOS-compatible low-power memory design. In this work, 10 % La metal cation fraction of HfO2 (La:HfO2) is proposed as the gate stack material in tunnel FET (TFET) for its potential as a memory device. 2D device simulations are carried out to show that the proposed ferroelectric TFET (FeTFET) provides the largest memory window (MW) as compared to present perovskite ferroelectric materials such as PZT, SBT (SrBi2Ta2O9) and silicon doped (4.6 % Si in HfO2) hafnium oxide (Si:HfO2). The larger window is attributed to greater polarization, and the calculation of MW is quantified by the shift in threshold voltage (Vth). The simulations carried out in this work suggest that La:HfO2 can be adopted as a potential ferroelectric material to target low-power FeTFET design at significantly reduced ferroelectric layer thickness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计和分析用于非易失性存储器应用的新型 La:HfO2 栅极叠层铁电隧道场效应晶体管
最近的实验研究表明,掺杂镧的氧化铪(La:HfO2)具有铁电特性。由于这种材料基于无铅、简单的二元氧化物 HfO2,并且具有出色的耐久性能(1 × 109 场循环无疲劳),因此特别引人关注。关于 La:HfO2 的材料方面已有大量信息,但它在 CMOS 兼容型低功耗存储器设计方面的应用潜力尚未得到证实。在这项研究中,我们提出了将 10% 的 La 金属阳离子部分加入 HfO2(La:HfO2)作为隧道场效应晶体管(TFET)的栅堆材料,以挖掘其作为存储器件的潜力。二维器件模拟显示,与目前的包晶体铁电材料(如 PZT、SBT(SrBi2Ta2O9)和硅掺杂(HfO2 中含 4.6% 的硅)氧化铪(Si:HfO2))相比,所提出的铁电 TFET(FeTFET)具有最大的存储窗口(MW)。更大的窗口归因于更强的极化,而 MW 的计算则通过阈值电压(Vth)的变化来量化。这项工作中进行的模拟表明,La:HfO2 可以作为一种潜在的铁电材料,在显著减少铁电层厚度的情况下实现低功耗 FeTFET 设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of an analog topology for a multi-layer neuronal network A graphene-based toxic detection approach Optimization of deep learning algorithms for large digital data processing using evolutionary neural networks The application of organic materials used in IC advanced packaging:A review Design and evaluation of clock-gating-based approximate multiplier for error-tolerant applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1