The priority encoder is a frequently used circuit in binary logic and is mostly used for interrupt handling and other priority resolving tasks. On the other hand, Ternary computing has tremendous potential for handling a wide variety of functions involving large range of numbers, whereas, the literature is confined to very basic functions. The proposed balanced priority encoder circuit that uses three logic symbols i.e. and . In this study, we develop the design and architecture of a Ternary Priority Encoder circuit with an estimation of its time complexity. The intricacy of the circuit under consideration is supposed to highlight the capabilities of the ternary logic system. The flexibility of the circuit lies in its implementation using simple binary counterparts. As there is no simulator available for Ternary Logic, we have developed a Balanced Ternary Logic Simulator which is freely available from https://github.com/Aggtur11/Ternary-Logic-Simulator. The logic behaviour of the proposed priority encoder circuits is verified using the developed simulator.
In this work, a high-k In0.53Ga0.47As silicon-on-insulator FinFET (InGaAs–SOI–FinFET) is presented for high-switching and ultra-low power applications at 7 nm gate length. Indium Gallium Arsenide (InGaAs) is a compound semiconductor that has gained attention in the field of semiconductor devices, including FinFETs. The incorporation of InGaAs in proposed FinFETs introduces several advantages, making it an attractive material for certain applications. InGaAs–SOI–FinFET performance has been observed and found high electron mobility, improved On-Current performance (ION), drain current (IDS), transconductance (gm), energy bands, lower subthreshold swing (SS), electric field, surface potential, and better short-channel behaviour. All the results of InGaAs–SOI–FinFET have been simultaneously compared with SOI-FinFET and conventional FinFET (C-FinFET). Incorporating InGaAs in the channel with high-k gate material enhances the drain current by ⁓75% and ⁓77% in the proposed device compared to the other two counterparts. Owing to the higher drain current in the InGaAs–SOI–FinFET, other parameters have also been improved, which leads to higher performance applications.