Neurotrophic Natural Products.

Yoshiyasu Fukuyama, Miwa Kubo, Kenichi Harada
{"title":"Neurotrophic Natural Products.","authors":"Yoshiyasu Fukuyama, Miwa Kubo, Kenichi Harada","doi":"10.1007/978-3-031-42422-9_1","DOIUrl":null,"url":null,"abstract":"<p><p>Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.</p>","PeriodicalId":20703,"journal":{"name":"Progress in the chemistry of organic natural products","volume":"123 ","pages":"1-473"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in the chemistry of organic natural products","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-42422-9_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经营养天然产品。
神经营养素(NGF、BDNF、NT3、NT4)可以减少细胞死亡、诱导分化以及维持神经元的结构和功能,因此是治疗神经退行性疾病的理想药物。然而,神经营养素在临床试验中并不十分有效,这主要是因为它们是高分子量蛋白质,无法通过血脑屏障。因此,能刺激内源性神经营养素合成或增强神经营养作用的神经营养素模拟小分子可能成为神经营养素的有前途的替代品。小分子量天然产物在人类历史上一直被用于膳食功能食品或传统医药中,在开发针对神经退行性疾病(如阿尔茨海默病)的新治疗药物方面具有巨大潜力。本文介绍了多种具有神经营养特性的天然产物,如神经发生、神经元外生促进(神经元生成)和神经保护,并重点介绍了几种神经营养天然产物的化学和生物学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
Neurotrophic Natural Products. Chemical Constituents Isolated from the Lichen Biome of Selected Species Native to North America. Natural Products Dereplication: Databases and Analytical Methods. The Chemical Ecology of Plant Natural Products. Tigliane Diterpenoids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1