Comparative analysis of miRNA expression profiles in flowering and non-flowering tissue of Crocus sativus L.

IF 2.5 3区 生物学 Q3 CELL BIOLOGY Protoplasma Pub Date : 2024-07-01 Epub Date: 2024-02-10 DOI:10.1007/s00709-024-01931-4
Archana Bhat, Sonal Mishra, Sanjana Kaul, Manoj Kumar Dhar
{"title":"Comparative analysis of miRNA expression profiles in flowering and non-flowering tissue of Crocus sativus L.","authors":"Archana Bhat, Sonal Mishra, Sanjana Kaul, Manoj Kumar Dhar","doi":"10.1007/s00709-024-01931-4","DOIUrl":null,"url":null,"abstract":"<p><p>Crocus sativus is a valuable plant due to the presence of apocarotenoids in its stigma. Considerable work has been done in the past to understand the apocarotenoid biosynthetic pathway in saffron. However, the reports on understanding the regulation of flowering at the post-transcriptional level are meagre. The study aimed to discover the candidate miRNAs, target genes, transcription factors (TFs), and apocarotenoid biosynthetic pathway genes associated with the regulation and transition of flowering in C. sativus. In the present investigation, miRNA profiling was performed in flowering and non-flowering corms of saffron, along with expression analysis of apocarotenoid genes and transcription factors involved in the synthesis of secondary metabolites. Significant modulation in the expression of miR156, miR159, miR166, miR172, miR395, miR396, miR399, and miR408 gene families was observed. We obtained 36 known miRNAs (26 in flowering and 10 in non-flowering) and 64 novel miRNAs (40 in flowering and 24 in non-flowering) unique to specific tissues in our analysis. TFs, including CsMADS and CsMYb, showed significant modulation in expression in flowering tissue, followed by CsHB. Additionally, the miRNAs were predicted to be involved in carbohydrate metabolism, phytohormone signalling, regulation of flower development, and response to stress, cold, and defence. The comprehensive study has enhanced our understanding of the regulatory machinery comprising factors like phytohormones, abiotic stress, apocarotenoid genes, transcription factors, and miRNAs responsible for the synthesis of apocarotenoids and developmental processes during and after flowering.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-024-01931-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Crocus sativus is a valuable plant due to the presence of apocarotenoids in its stigma. Considerable work has been done in the past to understand the apocarotenoid biosynthetic pathway in saffron. However, the reports on understanding the regulation of flowering at the post-transcriptional level are meagre. The study aimed to discover the candidate miRNAs, target genes, transcription factors (TFs), and apocarotenoid biosynthetic pathway genes associated with the regulation and transition of flowering in C. sativus. In the present investigation, miRNA profiling was performed in flowering and non-flowering corms of saffron, along with expression analysis of apocarotenoid genes and transcription factors involved in the synthesis of secondary metabolites. Significant modulation in the expression of miR156, miR159, miR166, miR172, miR395, miR396, miR399, and miR408 gene families was observed. We obtained 36 known miRNAs (26 in flowering and 10 in non-flowering) and 64 novel miRNAs (40 in flowering and 24 in non-flowering) unique to specific tissues in our analysis. TFs, including CsMADS and CsMYb, showed significant modulation in expression in flowering tissue, followed by CsHB. Additionally, the miRNAs were predicted to be involved in carbohydrate metabolism, phytohormone signalling, regulation of flower development, and response to stress, cold, and defence. The comprehensive study has enhanced our understanding of the regulatory machinery comprising factors like phytohormones, abiotic stress, apocarotenoid genes, transcription factors, and miRNAs responsible for the synthesis of apocarotenoids and developmental processes during and after flowering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开花和不开花组织中 miRNA 表达谱的比较分析
藏红花是一种珍贵的植物,因为其柱头中含有类胡萝卜素。过去已经做了大量工作来了解藏红花中类芹菜素的生物合成途径。然而,有关在转录后水平了解开花调控的报告却很少。本研究旨在发现与西红花开花调控和转折相关的候选 miRNA、靶基因、转录因子(TFs)和类芹菜素生物合成途径基因。本研究对藏红花开花和不开花茎秆中的 miRNA 进行了分析,并对参与次生代谢物合成的类芹菜素基因和转录因子进行了表达分析。我们观察到 miR156、miR159、miR166、miR172、miR395、miR396、miR399 和 miR408 基因家族的表达发生了显著变化。我们在分析中获得了特定组织特有的 36 个已知 miRNA(开花期 26 个,非开花期 10 个)和 64 个新型 miRNA(开花期 40 个,非开花期 24 个)。包括 CsMADS 和 CsMYb 在内的 TFs 在开花组织中的表达有显著变化,其次是 CsHB。此外,据预测,这些 miRNAs 还参与了碳水化合物代谢、植物激素信号传导、花的发育调控以及对胁迫、寒冷和防御的响应。这项全面的研究加深了我们对植物激素、非生物胁迫、类胡萝卜素基因、转录因子和 miRNAs 等因素组成的调控机制的了解,这些因素负责类胡萝卜素的合成以及花期和花后的发育过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protoplasma
Protoplasma 生物-细胞生物学
CiteScore
6.60
自引率
6.90%
发文量
99
审稿时长
4-8 weeks
期刊介绍: Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields: cell biology of both single and multicellular organisms molecular cytology the cell cycle membrane biology including biogenesis, dynamics, energetics and electrophysiology inter- and intracellular transport the cytoskeleton organelles experimental and quantitative ultrastructure cyto- and histochemistry Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".
期刊最新文献
Anti-microtubular activity of total alkaloids and aqueous extract of Detarium microcarpum a medicinal plant harvested in Mali. Plant intelligence dux: a comprehensive rebuttal of Kingsland and Taiz. Heterologous expression of the durum wheat TdHKT1;4-1 partially complements the mutant athkt1 in Arabidopsis thaliana under severe salt stress. The function of the ATG8 in the cilia and cortical microtubule maintenance of Euplotes amieti. Hydrogen peroxide modulates the expression of the target of rapamycin (TOR) and cell division in Arabidopsis thaliana.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1