WDR12/RAC1 axis promoted proliferation and anti-apoptosis in colorectal cancer cells.

IF 3.5 2区 生物学 Q3 CELL BIOLOGY Molecular and Cellular Biochemistry Pub Date : 2024-12-01 Epub Date: 2024-02-11 DOI:10.1007/s11010-024-04937-x
Su Wen, Xueqing Huang, Liping Xiong, Hao Zeng, Shuang Wu, Kangli An, Jing Bai, Zhipeng Zhou, Tiejun Yin
{"title":"WDR12/RAC1 axis promoted proliferation and anti-apoptosis in colorectal cancer cells.","authors":"Su Wen, Xueqing Huang, Liping Xiong, Hao Zeng, Shuang Wu, Kangli An, Jing Bai, Zhipeng Zhou, Tiejun Yin","doi":"10.1007/s11010-024-04937-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>WD repeat domain 12 (WDR12) plays a crucial role in the ribosome biogenesis pathway. However, its biological function in colorectal cancer (CRC) remains poorly understood. Therefore, this study aims to investigate the roles of WDR12 in the occurrence and progression of CRC, as well as its underlying mechanisms.</p><p><strong>Methods: </strong>The expression of WDR12 was assessed through The Cancer Genome Atlas (TCGA) and the Human Protein Atlas (HPA) database. Functional experiments including Celigo assay, MTT assay, and Caspase-3/7 assay were conducted to validate the role of WDR12 in the malignant progression of CRC. Additionally, mRNA chip-sequencing and ingenuity pathway analysis (IPA) were performed to identify the molecular mechanism.</p><p><strong>Results: </strong>WDR12 expression was significantly upregulated in CRC tissues compared to normal colorectal tissues. Knockdown of WDR12 reduced proliferation and promoted apoptosis of CRC cell lines in vitro and in vivo experiments. Furthermore, WDR12 expression had a significantly inverse association with diseases and functions, including cancer, cell cycle, DNA replication, recombination, cellular growth, proliferation and repair, as revealed by IPA analysis of mRNA chip-sequencing data. Moreover, the activation of cell cycle checkpoint kinases proteins in the cell cycle checkpoint control signaling pathway was enriched in the WDR12 knockdown CRC cell lines. Additionally, downregulation of rac family small GTPase 1 (RAC1) occurred upon WDR12 knockdown, thereby facilitating the proliferation and anti-apoptosis of CRC cells.</p><p><strong>Conclusion: </strong>Our study demonstrates that the WDR12/RAC1 axis promotes tumor progression in CRC. Therefore, WDR12 may serve as a novel oncogene and a potential target for individualized therapy in CRC. These findings provide an experimental foundation for the clinical development of drugs targeting the WDR12/RAC1 axis.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3341-3354"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-04937-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: WD repeat domain 12 (WDR12) plays a crucial role in the ribosome biogenesis pathway. However, its biological function in colorectal cancer (CRC) remains poorly understood. Therefore, this study aims to investigate the roles of WDR12 in the occurrence and progression of CRC, as well as its underlying mechanisms.

Methods: The expression of WDR12 was assessed through The Cancer Genome Atlas (TCGA) and the Human Protein Atlas (HPA) database. Functional experiments including Celigo assay, MTT assay, and Caspase-3/7 assay were conducted to validate the role of WDR12 in the malignant progression of CRC. Additionally, mRNA chip-sequencing and ingenuity pathway analysis (IPA) were performed to identify the molecular mechanism.

Results: WDR12 expression was significantly upregulated in CRC tissues compared to normal colorectal tissues. Knockdown of WDR12 reduced proliferation and promoted apoptosis of CRC cell lines in vitro and in vivo experiments. Furthermore, WDR12 expression had a significantly inverse association with diseases and functions, including cancer, cell cycle, DNA replication, recombination, cellular growth, proliferation and repair, as revealed by IPA analysis of mRNA chip-sequencing data. Moreover, the activation of cell cycle checkpoint kinases proteins in the cell cycle checkpoint control signaling pathway was enriched in the WDR12 knockdown CRC cell lines. Additionally, downregulation of rac family small GTPase 1 (RAC1) occurred upon WDR12 knockdown, thereby facilitating the proliferation and anti-apoptosis of CRC cells.

Conclusion: Our study demonstrates that the WDR12/RAC1 axis promotes tumor progression in CRC. Therefore, WDR12 may serve as a novel oncogene and a potential target for individualized therapy in CRC. These findings provide an experimental foundation for the clinical development of drugs targeting the WDR12/RAC1 axis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WDR12/RAC1 轴促进了结直肠癌细胞的增殖和抗凋亡。
背景:WD 重复结构域 12(WDR12)在核糖体生物生成途径中起着至关重要的作用。然而,人们对其在结直肠癌(CRC)中的生物学功能仍知之甚少。因此,本研究旨在探讨 WDR12 在 CRC 发生和发展中的作用及其内在机制:方法:通过癌症基因组图谱(TCGA)和人类蛋白质图谱(HPA)数据库评估 WDR12 的表达。方法:通过癌症基因组图谱(TCGA)和人类蛋白质图谱(HPA)数据库评估了WDR12的表达,并进行了Celigo实验、MTT实验和Caspase-3/7实验等功能实验,以验证WDR12在CRC恶性进展中的作用。此外,还进行了mRNA芯片测序和巧妙通路分析(IPA),以确定其分子机制:结果:与正常结直肠组织相比,WDR12在CRC组织中的表达明显上调。在体外和体内实验中,敲除 WDR12 可减少 CRC 细胞株的增殖并促进其凋亡。此外,通过对 mRNA 芯片测序数据进行 IPA 分析发现,WDR12 的表达与癌症、细胞周期、DNA 复制、重组、细胞生长、增殖和修复等疾病和功能有显著的反相关性。此外,在WDR12基因敲除的CRC细胞系中,细胞周期检查点控制信号通路中的细胞周期检查点激酶蛋白被激活。此外,WDR12敲除后,rac家族小GTP酶1(RAC1)发生下调,从而促进了CRC细胞的增殖和抗凋亡:我们的研究表明,WDR12/RAC1 轴促进了 CRC 的肿瘤进展。因此,WDR12 可作为一种新型致癌基因和个体化治疗 CRC 的潜在靶点。这些发现为针对 WDR12/RAC1 轴的药物临床开发提供了实验基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
期刊最新文献
Retraction Note: MiR-146a negatively regulates neutrophil elastase-induced MUC5AC secretion from 16HBE human bronchial epithelial cells. Retraction Note: Topical application of aminopeptidase N-neutralizing antibody accelerates wound closure. Correction to: Mitochondrial complex-1 as a therapeutic target for cardiac diseases. RETRACTED ARTICLE: Upregulation of MCL-1 by LUCAT1 through interacting with SRSF1 promotes the migration and invasion in non-small cell lung carcinoma. Functional activity and morphology of isolated rat cardiac mitochondria under calcium overload. Effect of naringin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1