首页 > 最新文献

Molecular and Cellular Biochemistry最新文献

英文 中文
Cancer-associated fibroblasts promote growth and dissemination of esophageal squamous cell carcinoma cells by secreting WNT family member 5A.
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-15 DOI: 10.1007/s11010-025-05223-0
Lishuai Yao, Changshuai Zhou, Libao Liu, Jinyuan He, Youbo Wang, An Wang

Esophageal squamous cell carcinoma (ESCC) is a common and aggressive subtype of esophageal cancer. This research investigates the functions of cancer-associated fibroblasts (CAFs) in the malignant phenotype of ESCC and probes the underpinning mechanism. Key CAF-associated proteins in ESCC were identified using bioinformatics analyses. ESCC cell lines were co-cultured with CAFs, followed by the addition of neutralizing antibodies against WNT family member 5A (WNT5A) (Anti-WNT5A; AW) and frizzled class receptor 5 (FZD5) (Anti-FZD5; AF), or a human recombinant protein of WNT5A (rWNT5A; rW). The effects of CAF stimulation and the neutralizing or recombinant proteins on the growth and dissemination of ESCC cells were investigated. In addition, ESCC cells were transplanted into nude mice for in vivo assessment of tumor growth and metastasis. WNT5A was identified as a CAF-associated protein linked to poor prognosis in ESCC. Co-culturing with CAFs augmented proliferation, mobility, and apoptosis resistance of ESCC cells. These effects were negated by the AW or AF but restored by rW. WNT5A interacted with FZD5 to activate the WNT signaling in ESCC cells. The rW treatment also enhanced tumorigenesis and metastasis of xenograft tumors in nude mice, with these effects diminished by AW or AF treatment. This study suggests that CAFs promote growth and dissemination of ESCC cell primarily through the secretion of WNT5A.

{"title":"Cancer-associated fibroblasts promote growth and dissemination of esophageal squamous cell carcinoma cells by secreting WNT family member 5A.","authors":"Lishuai Yao, Changshuai Zhou, Libao Liu, Jinyuan He, Youbo Wang, An Wang","doi":"10.1007/s11010-025-05223-0","DOIUrl":"https://doi.org/10.1007/s11010-025-05223-0","url":null,"abstract":"<p><p>Esophageal squamous cell carcinoma (ESCC) is a common and aggressive subtype of esophageal cancer. This research investigates the functions of cancer-associated fibroblasts (CAFs) in the malignant phenotype of ESCC and probes the underpinning mechanism. Key CAF-associated proteins in ESCC were identified using bioinformatics analyses. ESCC cell lines were co-cultured with CAFs, followed by the addition of neutralizing antibodies against WNT family member 5A (WNT5A) (Anti-WNT5A; AW) and frizzled class receptor 5 (FZD5) (Anti-FZD5; AF), or a human recombinant protein of WNT5A (rWNT5A; rW). The effects of CAF stimulation and the neutralizing or recombinant proteins on the growth and dissemination of ESCC cells were investigated. In addition, ESCC cells were transplanted into nude mice for in vivo assessment of tumor growth and metastasis. WNT5A was identified as a CAF-associated protein linked to poor prognosis in ESCC. Co-culturing with CAFs augmented proliferation, mobility, and apoptosis resistance of ESCC cells. These effects were negated by the AW or AF but restored by rW. WNT5A interacted with FZD5 to activate the WNT signaling in ESCC cells. The rW treatment also enhanced tumorigenesis and metastasis of xenograft tumors in nude mice, with these effects diminished by AW or AF treatment. This study suggests that CAFs promote growth and dissemination of ESCC cell primarily through the secretion of WNT5A.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of physical exercise in modulating microRNAs expression in acute myocardial infarction: a review.
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-15 DOI: 10.1007/s11010-025-05229-8
Raphael Furtado Marques, Marcelo Souza de Andrade, Andressa Coelho Ferreira, Carlos José Moraes Dias, Nivaldo de Jesus Silva Soares Junior, Carlos Alberto Alves Dias Filho, Rachel Melo Ribeiro

MicroRNAs (miRNAs) have emerged as promising tools for diagnosis and treatment in numerous pathophysiological processes, including cardiovascular diseases (CVD). In this context, acute myocardial infarction (AMI) is one of the leading causes of death by CVD worldwide. In this sense, physical exercise (PE) is considered a non-pharmacological strategy to reduce the complex alterations in AMI. This study is an integrative review of the literature to explore the effects of PE on the cardiomyocyte post-AMI, including an understanding of the mechanisms by which the PE acts on the miRNAs expression. A review was performed on PubMed, Scopus, and Web of Science. After the searches, all records were imported into the Mendeley software, and duplicate articles were removed. The year of publication of the papers was not limited. 19 studies were performed on animal models, 10 in experimental models using rats, and 08 in models with mice and only one study was carried out on patients with AMI. The results showed the potential use of miRNAs as diagnostic tools and attractive biomarkers for treating AMI. In addition, PE can regulate miRNAs expression in the myocardial cell, promotes apoptosis resistance, autophagy regulation, lower cardiac fibrosis and cardiac hypertrophy, and higher angiogenesis through the signaling of miRNAs. The main microRNAs mitigating the deleterious effects of AMI and modulated by PE were miRNA-222, miRNA-1192, miRNA-146, and miRNA-126. PE modulates the expression of specific miRNAs that support cardiac function, promoting cardioprotective effects or facilitating cardiac recovery post-AMI.

{"title":"The role of physical exercise in modulating microRNAs expression in acute myocardial infarction: a review.","authors":"Raphael Furtado Marques, Marcelo Souza de Andrade, Andressa Coelho Ferreira, Carlos José Moraes Dias, Nivaldo de Jesus Silva Soares Junior, Carlos Alberto Alves Dias Filho, Rachel Melo Ribeiro","doi":"10.1007/s11010-025-05229-8","DOIUrl":"https://doi.org/10.1007/s11010-025-05229-8","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) have emerged as promising tools for diagnosis and treatment in numerous pathophysiological processes, including cardiovascular diseases (CVD). In this context, acute myocardial infarction (AMI) is one of the leading causes of death by CVD worldwide. In this sense, physical exercise (PE) is considered a non-pharmacological strategy to reduce the complex alterations in AMI. This study is an integrative review of the literature to explore the effects of PE on the cardiomyocyte post-AMI, including an understanding of the mechanisms by which the PE acts on the miRNAs expression. A review was performed on PubMed, Scopus, and Web of Science. After the searches, all records were imported into the Mendeley software, and duplicate articles were removed. The year of publication of the papers was not limited. 19 studies were performed on animal models, 10 in experimental models using rats, and 08 in models with mice and only one study was carried out on patients with AMI. The results showed the potential use of miRNAs as diagnostic tools and attractive biomarkers for treating AMI. In addition, PE can regulate miRNAs expression in the myocardial cell, promotes apoptosis resistance, autophagy regulation, lower cardiac fibrosis and cardiac hypertrophy, and higher angiogenesis through the signaling of miRNAs. The main microRNAs mitigating the deleterious effects of AMI and modulated by PE were miRNA-222, miRNA-1192, miRNA-146, and miRNA-126. PE modulates the expression of specific miRNAs that support cardiac function, promoting cardioprotective effects or facilitating cardiac recovery post-AMI.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decorin: matrix-based pan-cancer tumor suppressor.
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-15 DOI: 10.1007/s11010-025-05224-z
Sandeep Appunni, Anshul Saxena, Venkataraghavan Ramamoorthy, Yanjia Zhang, Mayur Doke, Sudheesh S Nair, Atulya Aman Khosla, Muni Rubens

Studies have shown that decorin is a potent pan-cancer tumor suppressor that is under-expressed in most cancers. Decorin interacts with receptor tyrosine kinases and functions as a pan-receptor tyrosine kinase inhibitor, thereby suppressing oncogenic signals. Decorin deficiency promotes epithelial-to-mesenchymal transition and enhances cancer dissemination and metastasis. According to recent GLOBOCAN estimates, the most common cancers worldwide are breast, lung, prostate, colorectal, skin (non-melanoma), and stomach. Considering the burden of rising cancer incidence and the importance of discovering novel molecular markers and potential therapeutic agents for cancer management, we have outlined the possible expressional and clinicopathological significance of decorin in major cancers based on available pre-clinical and clinical studies. Measuring plasma decorin is a minimally invasive technique, and human studies have shown that it is useful in predicting clinical outcomes in cancer though it needs further validation. Oncolytic virus-mediated decorin gene transfer has shown significant anti-tumorigenic effects in pre-clinical studies, though its implication in human subjects is yet to be understood. Exogenous decorin delivery in experimental studies has been shown to mitigate cancer growth, but its therapeutic efficacy and safety are poorly understood. Future research is required to translate the tumor-suppressive action of decorin observed in preclinical experiments to therapeutic interventions in human subjects.

{"title":"Decorin: matrix-based pan-cancer tumor suppressor.","authors":"Sandeep Appunni, Anshul Saxena, Venkataraghavan Ramamoorthy, Yanjia Zhang, Mayur Doke, Sudheesh S Nair, Atulya Aman Khosla, Muni Rubens","doi":"10.1007/s11010-025-05224-z","DOIUrl":"https://doi.org/10.1007/s11010-025-05224-z","url":null,"abstract":"<p><p>Studies have shown that decorin is a potent pan-cancer tumor suppressor that is under-expressed in most cancers. Decorin interacts with receptor tyrosine kinases and functions as a pan-receptor tyrosine kinase inhibitor, thereby suppressing oncogenic signals. Decorin deficiency promotes epithelial-to-mesenchymal transition and enhances cancer dissemination and metastasis. According to recent GLOBOCAN estimates, the most common cancers worldwide are breast, lung, prostate, colorectal, skin (non-melanoma), and stomach. Considering the burden of rising cancer incidence and the importance of discovering novel molecular markers and potential therapeutic agents for cancer management, we have outlined the possible expressional and clinicopathological significance of decorin in major cancers based on available pre-clinical and clinical studies. Measuring plasma decorin is a minimally invasive technique, and human studies have shown that it is useful in predicting clinical outcomes in cancer though it needs further validation. Oncolytic virus-mediated decorin gene transfer has shown significant anti-tumorigenic effects in pre-clinical studies, though its implication in human subjects is yet to be understood. Exogenous decorin delivery in experimental studies has been shown to mitigate cancer growth, but its therapeutic efficacy and safety are poorly understood. Future research is required to translate the tumor-suppressive action of decorin observed in preclinical experiments to therapeutic interventions in human subjects.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Altered cognitive function in obese patients: relationship to gut flora.
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-12 DOI: 10.1007/s11010-024-05201-y
Mengyuan Deng, Fushan Tang, Zhaoqiong Zhu
<p><p>Obesity is a risk factor for non-communicable diseases such as cardiovascular disease and diabetes, which are leading causes of death and disability. Today, China has the largest number of overweight and obese people, imposing a heavy burden on China's healthcare system. Obesity adversely affects the central nervous system (CNS), especially cognitive functions such as executive power, working memory, learning, and so on. The gradual increase in adult obesity rates has been accompanied by a increase in childhood obesity rates. In the past two decades, the obesity rate among children under 5 years of age has increased from 32 to 42 million. If childhood obesity is not intervened in the early years, it will continue into adulthood and remain there for life. Among the potential causative factors, early lifestyle may influence the composition of the gut flora in childhood obesity, such as the rate and intake of high-energy foods, low levels of physical activity, may persist into adulthood, thus, early lifestyle interventions may improve the composition of the gut flora in obese children. Adipose Axis plays an important role in the development of obesity. Adipose tissue is characterized by increased expression of nucleoside diphosphate-linked molecule X-type motif 2 (NUDT2), amphiphilic protein AMPH genes, which encode proteins that all play important roles in the CNS. NUDT2 is associated with intellectual disability. Furthermore, amphiphysin (AMPH) is involved in glutamatergic signaling, ganglionic synapse development, and maturation, which is associated with mild cognitive impairment (MCI) and Alzheimer's disease (AD). All of the above studies show that obesity is closely related to cognitive decline in patients. Animal experiments have confirmed that obesity causes changes in cognitive function. For example, high-fat diets rich in long- and medium-chain saturated fatty acids may adversely affect cognitive function in obese mice. This process may be attributed to the Short-Chain Fatty Acid (SCFA)-rich high-fat diet (HFD) activating enterocyte TLR signaling, especially TLR-2 and TLR-4, altering the downstream MyD88-4 signaling, thereby impacting the downstream MyD88-NF-κB signaling cascade and up-regulating the levels of pro-inflammatory factors and lipopolysaccharide (LPS). These changes result in the loss of integrity of the intestinal mucosa and cause an imbalance in the internal environment. Obesity may lead to the disruption of the intestinal flora and damage the intestinal barrier function, causing intestinal flora dysbiosis. In recent years, a growing number of studies have investigated the relationship between obesity and the intestinal flora. For example, high-fat and high-sugar diets have been found to lead to the thinning of the mucus layer of the colon, a decrease in the number of tight junction proteins, and an increase in intestinal permeability in mice. Such changes alter the composition of intestinal microorganisms, allow endotox
{"title":"Altered cognitive function in obese patients: relationship to gut flora.","authors":"Mengyuan Deng, Fushan Tang, Zhaoqiong Zhu","doi":"10.1007/s11010-024-05201-y","DOIUrl":"https://doi.org/10.1007/s11010-024-05201-y","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Obesity is a risk factor for non-communicable diseases such as cardiovascular disease and diabetes, which are leading causes of death and disability. Today, China has the largest number of overweight and obese people, imposing a heavy burden on China's healthcare system. Obesity adversely affects the central nervous system (CNS), especially cognitive functions such as executive power, working memory, learning, and so on. The gradual increase in adult obesity rates has been accompanied by a increase in childhood obesity rates. In the past two decades, the obesity rate among children under 5 years of age has increased from 32 to 42 million. If childhood obesity is not intervened in the early years, it will continue into adulthood and remain there for life. Among the potential causative factors, early lifestyle may influence the composition of the gut flora in childhood obesity, such as the rate and intake of high-energy foods, low levels of physical activity, may persist into adulthood, thus, early lifestyle interventions may improve the composition of the gut flora in obese children. Adipose Axis plays an important role in the development of obesity. Adipose tissue is characterized by increased expression of nucleoside diphosphate-linked molecule X-type motif 2 (NUDT2), amphiphilic protein AMPH genes, which encode proteins that all play important roles in the CNS. NUDT2 is associated with intellectual disability. Furthermore, amphiphysin (AMPH) is involved in glutamatergic signaling, ganglionic synapse development, and maturation, which is associated with mild cognitive impairment (MCI) and Alzheimer's disease (AD). All of the above studies show that obesity is closely related to cognitive decline in patients. Animal experiments have confirmed that obesity causes changes in cognitive function. For example, high-fat diets rich in long- and medium-chain saturated fatty acids may adversely affect cognitive function in obese mice. This process may be attributed to the Short-Chain Fatty Acid (SCFA)-rich high-fat diet (HFD) activating enterocyte TLR signaling, especially TLR-2 and TLR-4, altering the downstream MyD88-4 signaling, thereby impacting the downstream MyD88-NF-κB signaling cascade and up-regulating the levels of pro-inflammatory factors and lipopolysaccharide (LPS). These changes result in the loss of integrity of the intestinal mucosa and cause an imbalance in the internal environment. Obesity may lead to the disruption of the intestinal flora and damage the intestinal barrier function, causing intestinal flora dysbiosis. In recent years, a growing number of studies have investigated the relationship between obesity and the intestinal flora. For example, high-fat and high-sugar diets have been found to lead to the thinning of the mucus layer of the colon, a decrease in the number of tight junction proteins, and an increase in intestinal permeability in mice. Such changes alter the composition of intestinal microorganisms, allow endotox","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of FAP+ fibroblasts on cell proliferation migration and immunoregulation of esophageal squamous carcinoma cells through the CXCL12/CXCR4 axis.
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-11 DOI: 10.1007/s11010-025-05226-x
Lijuan Duan, Shasha Cao, Fang Zhao, Xianjuan Du, Zhaowei Gao, Xiaoxiao Wang, Fang Bian

Cancer-associated fibroblasts (CAFs) secrete and synthesize fibroblast activation protein (FAP), which could promote proliferation and immunosuppression of multiple cancers including esophageal squamous cell carcinoma (ESCC). CXCL12/CXCR4 signaling could be revitalized by CAFs in cancer cells. Nevertheless, the significance of this interaction in ESCC has yet to be elucidated. Herein, we investigated whether FAP+ CAF cells could promote ESCC cells proliferation, migration and regulate immunity through the CXCL12/CXCR4 pathway in vitro and in vivo. The protein expression level of FSP1, FAP, CD8+ and Ki-67 in different sample was estimated by IHC and western blot. qPCR was used to quantify the mRNA level of FSP1, FAP, CD8+ and Ki-67 in different sample. The cell viability, proliferation, migration and invasion of different sample were evaluated by CCK-8, EdU staining, wound healing assay and Transwell assay, respectively. The ELISA was carried out to measure the protein level of IFN-γ, TNF-α, GZMB and IL-2. ESCC xenograft mice model was established to assess the impact of FAP+ CAF. FSP1, FAP, CD8+ and Ki-67 are greatly up-regulated in hESCC tissues. Through CXCL12/CXCR4 axis, FAP-positive CAF was capable of promoting the cell proliferation, migration and invasion of ESCC tumor cells and preventing the CD8+ T cells from secreting cytokine. Blocking this signaling with selective CXCR4 antagonist could counteract the effects caused by high-expression of FAP. FAP+ CAFs could inhibit the occurrence and development of tumors. These results indicated that FAP-positive CAF have an impact on cell proliferation migration and immunoregulation of ESCC through the CXCL12/CXCR4 axis.

{"title":"Effects of FAP+ fibroblasts on cell proliferation migration and immunoregulation of esophageal squamous carcinoma cells through the CXCL12/CXCR4 axis.","authors":"Lijuan Duan, Shasha Cao, Fang Zhao, Xianjuan Du, Zhaowei Gao, Xiaoxiao Wang, Fang Bian","doi":"10.1007/s11010-025-05226-x","DOIUrl":"https://doi.org/10.1007/s11010-025-05226-x","url":null,"abstract":"<p><p>Cancer-associated fibroblasts (CAFs) secrete and synthesize fibroblast activation protein (FAP), which could promote proliferation and immunosuppression of multiple cancers including esophageal squamous cell carcinoma (ESCC). CXCL12/CXCR4 signaling could be revitalized by CAFs in cancer cells. Nevertheless, the significance of this interaction in ESCC has yet to be elucidated. Herein, we investigated whether FAP<sup>+</sup> CAF cells could promote ESCC cells proliferation, migration and regulate immunity through the CXCL12/CXCR4 pathway in vitro and in vivo. The protein expression level of FSP1, FAP, CD8+ and Ki-67 in different sample was estimated by IHC and western blot. qPCR was used to quantify the mRNA level of FSP1, FAP, CD8+ and Ki-67 in different sample. The cell viability, proliferation, migration and invasion of different sample were evaluated by CCK-8, EdU staining, wound healing assay and Transwell assay, respectively. The ELISA was carried out to measure the protein level of IFN-γ, TNF-α, GZMB and IL-2. ESCC xenograft mice model was established to assess the impact of FAP+ CAF. FSP1, FAP, CD8+ and Ki-67 are greatly up-regulated in hESCC tissues. Through CXCL12/CXCR4 axis, FAP-positive CAF was capable of promoting the cell proliferation, migration and invasion of ESCC tumor cells and preventing the CD8+ T cells from secreting cytokine. Blocking this signaling with selective CXCR4 antagonist could counteract the effects caused by high-expression of FAP. FAP+ CAFs could inhibit the occurrence and development of tumors. These results indicated that FAP-positive CAF have an impact on cell proliferation migration and immunoregulation of ESCC through the CXCL12/CXCR4 axis.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel insights into the central protective role of ACE2 in diabetic cardiomyopathy: from underlying signaling pathways to therapeutic perspectives.
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-10 DOI: 10.1007/s11010-024-05196-6
Xinyi Li, Shunlin Qu

Diabetic cardiomyopathy (DCM) is a cardiac complication specific to individuals with diabetes. It is defined as abnormalities of myocardial structure and function in diabetic patients who do not exhibit any obvious coronary artery disease, hypertensive heart disease, valvular heart disease, or inherited cardiomyopathy. A significant cardiovascular protective factor identified recently is angiotensin-converting enzyme 2 (ACE2), which is a rising star in the renin angiotensin system (RAS) and is responsible for the onset and progression of DCM. Nonetheless, there is not a comprehensive review outlining ACE2's effect on DCM. From the perspective of the pathogenesis of DCM, this review summarizes the myocardial protective role of ACE2 in the aspects of alleviating myocardial structure and dysfunction, correcting energy metabolism disorders, and restoring vascular function. Concurrently, we propose the connections between ACE2 and underlying signaling pathways, including ADAM17, Apelin/APJ, and Nrf2. Additionally, we highlight ACE2-related pharmaceutical treatment options and clinical application prospects for preventing and managing DCM. Further and underlying research is extensively required to completely comprehend the principal pathophysiological mechanism of DCM and the distinctive function of ACE2, switching experimental findings into clinical practice and identifying efficient therapeutic approaches.

{"title":"Novel insights into the central protective role of ACE2 in diabetic cardiomyopathy: from underlying signaling pathways to therapeutic perspectives.","authors":"Xinyi Li, Shunlin Qu","doi":"10.1007/s11010-024-05196-6","DOIUrl":"https://doi.org/10.1007/s11010-024-05196-6","url":null,"abstract":"<p><p>Diabetic cardiomyopathy (DCM) is a cardiac complication specific to individuals with diabetes. It is defined as abnormalities of myocardial structure and function in diabetic patients who do not exhibit any obvious coronary artery disease, hypertensive heart disease, valvular heart disease, or inherited cardiomyopathy. A significant cardiovascular protective factor identified recently is angiotensin-converting enzyme 2 (ACE2), which is a rising star in the renin angiotensin system (RAS) and is responsible for the onset and progression of DCM. Nonetheless, there is not a comprehensive review outlining ACE2's effect on DCM. From the perspective of the pathogenesis of DCM, this review summarizes the myocardial protective role of ACE2 in the aspects of alleviating myocardial structure and dysfunction, correcting energy metabolism disorders, and restoring vascular function. Concurrently, we propose the connections between ACE2 and underlying signaling pathways, including ADAM17, Apelin/APJ, and Nrf2. Additionally, we highlight ACE2-related pharmaceutical treatment options and clinical application prospects for preventing and managing DCM. Further and underlying research is extensively required to completely comprehend the principal pathophysiological mechanism of DCM and the distinctive function of ACE2, switching experimental findings into clinical practice and identifying efficient therapeutic approaches.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current understanding of PEAK family members in regulation of cellular signaling pathways and cancer therapy.
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-08 DOI: 10.1007/s11010-025-05219-w
Mana Alavi, Raheleh Roudi, Alberto D'Angelo, Navid Sobhani, Fatemeh Safari

Cancer evades therapy by multiple mechanisms, leading to uncontrolled cell growth and metastasis. Targeted therapies have shown promise in treating cancer by focusing on pathways within cancer cells. The PEAK family, comprising PEAK1 (SgK269), PEAK2 (SgK223/Pragmin), and the latest addition, PEAK3 (C19orf35), plays a crucial role in modulating cellular processes. Dysregulation and hyperactivity of these proteins, through overexpression or mutations, are associated with a wide range of cancers. This review delves into the different roles of the PEAK family members in regulating cell signaling pathways and highlights their potential in cancer therapy.

{"title":"Current understanding of PEAK family members in regulation of cellular signaling pathways and cancer therapy.","authors":"Mana Alavi, Raheleh Roudi, Alberto D'Angelo, Navid Sobhani, Fatemeh Safari","doi":"10.1007/s11010-025-05219-w","DOIUrl":"https://doi.org/10.1007/s11010-025-05219-w","url":null,"abstract":"<p><p>Cancer evades therapy by multiple mechanisms, leading to uncontrolled cell growth and metastasis. Targeted therapies have shown promise in treating cancer by focusing on pathways within cancer cells. The PEAK family, comprising PEAK1 (SgK269), PEAK2 (SgK223/Pragmin), and the latest addition, PEAK3 (C19orf35), plays a crucial role in modulating cellular processes. Dysregulation and hyperactivity of these proteins, through overexpression or mutations, are associated with a wide range of cancers. This review delves into the different roles of the PEAK family members in regulating cell signaling pathways and highlights their potential in cancer therapy.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exogenous hydrogen sulfide improves non-alcoholic fatty liver disease by inhibiting endoplasmic reticulum stress/NLRP3 inflammasome pathway.
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-08 DOI: 10.1007/s11010-025-05220-3
Xiaodi Fu, Qi Zhang, Yuhang Chen, Ying Li, Honggang Wang

Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease worldwide, and its exact pathogenesis has not been fully studied. Hydrogen sulfide (H2S) is the third gas signaling molecule discovered in mammals, following nitric oxide and carbon monoxide. It has the effects of anti-inflammation, anti-apoptosis, and so on, thereby playing an important role in many diseases. However, the role and mechanism of exogenous H2S in NAFLD are not fully understood. In this study, we constructed in vitro and in vivo NAFLD models by feeding mice a high-fat diet and stimulating hepatocytes with palmitic acid, respectively, to investigate the improvement effect and mechanism of exogenous H2S on NAFLD. The results showed that NaHS (a donor of H2S) treatment alleviated lipid accumulation, inflammation, apoptosis and pyroptosis, and downregulated endoplasmic reticulum (ER) stress and nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NRRP3) inflammasome in NAFLD. The activation of NLRP3 inflammasome weakened NaHS improvement of NAFLD, indicating that exogenous H2S ameliorated NAFLD by inhibiting NLRP3 inflammasome-mediated lipid synthesis, inflammation, apoptosis and pyroptosis. Similarly, the activation of ER stress weakened NaHS improvement of NAFLD and NaHS inhibition of NLRP3 inflammasome, indicating that exogenous H2S suppressed NLRP3 inflammasome by downregulating ER stress, thus improving NAFLD. Additionally, the protein expressions of NLRP3 and cleaved caspase-1 were downregulated after inhibiting the reactive oxygen species (ROS)/extracellular signal-regulated kinases (ERK) and ROS/thioredoxin-interacting protein (TXNIP) pathways, indicating that ER stress activated NLRP3 inflammasome through the ROS/ERK and ROS/TXNIP pathways. In conclusion, our results indicated that exogenous H2S inhibited NLRP3 inflammasome-mediated hepatocytes inflammation, lipid synthesis, apoptosis and pyroptosis by downregulating ER stress, thereby improving NAFLD; Furthermore, ER stress activated NLRP3 inflammasome through the ROS/ERK and ROS/TXNIP pathways in NAFLD. ER stress/NLRP3 inflammasome is expected to become a new target of H2S for treating NAFLD.

{"title":"Exogenous hydrogen sulfide improves non-alcoholic fatty liver disease by inhibiting endoplasmic reticulum stress/NLRP3 inflammasome pathway.","authors":"Xiaodi Fu, Qi Zhang, Yuhang Chen, Ying Li, Honggang Wang","doi":"10.1007/s11010-025-05220-3","DOIUrl":"https://doi.org/10.1007/s11010-025-05220-3","url":null,"abstract":"<p><p>Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease worldwide, and its exact pathogenesis has not been fully studied. Hydrogen sulfide (H<sub>2</sub>S) is the third gas signaling molecule discovered in mammals, following nitric oxide and carbon monoxide. It has the effects of anti-inflammation, anti-apoptosis, and so on, thereby playing an important role in many diseases. However, the role and mechanism of exogenous H<sub>2</sub>S in NAFLD are not fully understood. In this study, we constructed in vitro and in vivo NAFLD models by feeding mice a high-fat diet and stimulating hepatocytes with palmitic acid, respectively, to investigate the improvement effect and mechanism of exogenous H<sub>2</sub>S on NAFLD. The results showed that NaHS (a donor of H<sub>2</sub>S) treatment alleviated lipid accumulation, inflammation, apoptosis and pyroptosis, and downregulated endoplasmic reticulum (ER) stress and nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NRRP3) inflammasome in NAFLD. The activation of NLRP3 inflammasome weakened NaHS improvement of NAFLD, indicating that exogenous H<sub>2</sub>S ameliorated NAFLD by inhibiting NLRP3 inflammasome-mediated lipid synthesis, inflammation, apoptosis and pyroptosis. Similarly, the activation of ER stress weakened NaHS improvement of NAFLD and NaHS inhibition of NLRP3 inflammasome, indicating that exogenous H<sub>2</sub>S suppressed NLRP3 inflammasome by downregulating ER stress, thus improving NAFLD. Additionally, the protein expressions of NLRP3 and cleaved caspase-1 were downregulated after inhibiting the reactive oxygen species (ROS)/extracellular signal-regulated kinases (ERK) and ROS/thioredoxin-interacting protein (TXNIP) pathways, indicating that ER stress activated NLRP3 inflammasome through the ROS/ERK and ROS/TXNIP pathways. In conclusion, our results indicated that exogenous H<sub>2</sub>S inhibited NLRP3 inflammasome-mediated hepatocytes inflammation, lipid synthesis, apoptosis and pyroptosis by downregulating ER stress, thereby improving NAFLD; Furthermore, ER stress activated NLRP3 inflammasome through the ROS/ERK and ROS/TXNIP pathways in NAFLD. ER stress/NLRP3 inflammasome is expected to become a new target of H<sub>2</sub>S for treating NAFLD.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MTMR7 attenuates the proliferation and migration of pulmonary arterial smooth muscle cells in pulmonary hypertension by suppressing ERK/STAT3 signaling.
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-07 DOI: 10.1007/s11010-025-05217-y
Jia Wang, Bing Xuan, Baomei Song, Ting Wang, Cong Lan, Wei Guo, Yongjian Yang, Xiongshan Sun

Myotubularin-related protein 7 (MTMR7) represses proliferation in several cell types. However, the role of MTMR7 in pulmonary arterial smooth muscle cells (PASMCs) and pulmonary hypertension (PH) is unknown. The present study aimed to explore the role of MTMR7 in PH, as well as in the proliferation and migration of PASMCs. A monocrotaline (MCT)-induced PH mouse model was established. Mtmr7-transgenic (Mtmr7-Tg) mice and an adenovirus carrying the Mtmr7 vector (Ad-Mtmr7) were used to achieve MTMR7 overexpression in vivo and in vitro, respectively. Ultrasound and morphological analyses were used to evaluate the severity of PH. Cell counting kit-8 (CCK-8) and Ki-67 immunofluorescence staining were used to assess the proliferation of PASMCs. Wound-healing and transwell assays were used to assess cell migration. MTMR7 was upregulated in hypoxia-stimulated PASMCs and pulmonary arteries of MCT-treated mice. When compared with wild-type mice, PH-associated symptoms were significantly ameliorated in Mtmr7-Tg mice after MCT treatment when compared to wild-type mice. MTMR7 overexpression suppressed the proliferation and migration of PASMCs induced by hypoxia. Further experiments revealed that MTMR7 inhibited the phosphorylation levels of ERK1/2 and STAT3 both in vivo and in vitro. Restoring either ERK1/2 or STAT3 eliminated the protective role of MTMR7 against PH. Additionally, restoring ERK1/2 also reversed MTMR7-mediated STAT3 dephosphorylation. Our study highlights the inhibitory role of MTMR7 in PH and in the proliferation and migration of PASMCs and thus provides a novel potent therapeutic strategy for treating PH.

{"title":"MTMR7 attenuates the proliferation and migration of pulmonary arterial smooth muscle cells in pulmonary hypertension by suppressing ERK/STAT3 signaling.","authors":"Jia Wang, Bing Xuan, Baomei Song, Ting Wang, Cong Lan, Wei Guo, Yongjian Yang, Xiongshan Sun","doi":"10.1007/s11010-025-05217-y","DOIUrl":"https://doi.org/10.1007/s11010-025-05217-y","url":null,"abstract":"<p><p>Myotubularin-related protein 7 (MTMR7) represses proliferation in several cell types. However, the role of MTMR7 in pulmonary arterial smooth muscle cells (PASMCs) and pulmonary hypertension (PH) is unknown. The present study aimed to explore the role of MTMR7 in PH, as well as in the proliferation and migration of PASMCs. A monocrotaline (MCT)-induced PH mouse model was established. Mtmr7-transgenic (Mtmr7-Tg) mice and an adenovirus carrying the Mtmr7 vector (Ad-Mtmr7) were used to achieve MTMR7 overexpression in vivo and in vitro, respectively. Ultrasound and morphological analyses were used to evaluate the severity of PH. Cell counting kit-8 (CCK-8) and Ki-67 immunofluorescence staining were used to assess the proliferation of PASMCs. Wound-healing and transwell assays were used to assess cell migration. MTMR7 was upregulated in hypoxia-stimulated PASMCs and pulmonary arteries of MCT-treated mice. When compared with wild-type mice, PH-associated symptoms were significantly ameliorated in Mtmr7-Tg mice after MCT treatment when compared to wild-type mice. MTMR7 overexpression suppressed the proliferation and migration of PASMCs induced by hypoxia. Further experiments revealed that MTMR7 inhibited the phosphorylation levels of ERK1/2 and STAT3 both in vivo and in vitro. Restoring either ERK1/2 or STAT3 eliminated the protective role of MTMR7 against PH. Additionally, restoring ERK1/2 also reversed MTMR7-mediated STAT3 dephosphorylation. Our study highlights the inhibitory role of MTMR7 in PH and in the proliferation and migration of PASMCs and thus provides a novel potent therapeutic strategy for treating PH.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of sirtuins in the regulation of reactive oxygen species in myocardial ischemia/reperfusion injury.
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-07 DOI: 10.1007/s11010-024-05204-9
Zheng Wang, Xiaopeng Zhao, Mingjing Lu, Naiyu Wang, Shu Xu, Dongyu Min, Lijie Wang

Myocardial ischemia/reperfusion (I/R) injury has high morbidity and mortality rates, posing a significant burden on society. There is an urgent need to understand its pathogenesis and develop effective treatments. Reactive oxygen species (ROS) are crucial for the development of myocardial I/R injury, and inhibiting ROS overproduction is one of the most critical ways to delay myocardial I/R injury. Sirtuins are a group of nicotinic adenine dinucleotide ( +)-dependent histone deacetylases whose members can regulate ROS by modulating various biological processes. Numerous studies have shown that Sirtuins play an essential role in the progression of myocardial I/R injury by regulating ROS. This study focuses on the relationship between myocardial I/R injury and ROS, Sirtuins and ROS, discusses the role of Sirtuins in regulating ROS in myocardial I/R, and summarizes the therapeutic modalities aimed at targeting Sirtuins to modulate ROS in myocardial I/R injury, thereby guiding future research endeavors.

心肌缺血/再灌注(I/R)损伤的发病率和死亡率都很高,给社会造成了沉重负担。目前迫切需要了解其发病机制并开发有效的治疗方法。活性氧(ROS)是导致心肌I/R损伤的关键因素,而抑制ROS的过度产生是延缓心肌I/R损伤的最关键方法之一。Sirtuins 是一组依赖于烟碱腺嘌呤二核苷酸(+)的组蛋白去乙酰化酶,其成员可通过调节各种生物过程来调节 ROS。大量研究表明,Sirtuins 通过调节 ROS 在心肌 I/R 损伤的进展中起着至关重要的作用。本研究主要探讨了心肌I/R损伤与ROS、Sirtuins和ROS之间的关系,讨论了Sirtuins在心肌I/R中调节ROS的作用,并总结了针对Sirtuins调节心肌I/R损伤中ROS的治疗方法,从而指导未来的研究工作。
{"title":"The role of sirtuins in the regulation of reactive oxygen species in myocardial ischemia/reperfusion injury.","authors":"Zheng Wang, Xiaopeng Zhao, Mingjing Lu, Naiyu Wang, Shu Xu, Dongyu Min, Lijie Wang","doi":"10.1007/s11010-024-05204-9","DOIUrl":"https://doi.org/10.1007/s11010-024-05204-9","url":null,"abstract":"<p><p>Myocardial ischemia/reperfusion (I/R) injury has high morbidity and mortality rates, posing a significant burden on society. There is an urgent need to understand its pathogenesis and develop effective treatments. Reactive oxygen species (ROS) are crucial for the development of myocardial I/R injury, and inhibiting ROS overproduction is one of the most critical ways to delay myocardial I/R injury. Sirtuins are a group of nicotinic adenine dinucleotide ( +)-dependent histone deacetylases whose members can regulate ROS by modulating various biological processes. Numerous studies have shown that Sirtuins play an essential role in the progression of myocardial I/R injury by regulating ROS. This study focuses on the relationship between myocardial I/R injury and ROS, Sirtuins and ROS, discusses the role of Sirtuins in regulating ROS in myocardial I/R, and summarizes the therapeutic modalities aimed at targeting Sirtuins to modulate ROS in myocardial I/R injury, thereby guiding future research endeavors.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular and Cellular Biochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1