首页 > 最新文献

Molecular and Cellular Biochemistry最新文献

英文 中文
Coronary microthrombi in the failing human heart: the role of von Willebrand factor and PECAM-1. 衰竭人体心脏中的冠状动脉微血栓:von Willebrand因子和PECAM-1的作用。
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-02-21 DOI: 10.1007/s11010-024-04942-0
Sawa Kostin, Theodoros Giannakopoulos, Manfred Richter, Florian Krizanic, Benjamin Sasko, Oliver Ritter, Nikolaos Pagonas

The recognition of microthrombi in the heart microcirculation has recently emerged from studies in COVID-19 decedents. The present study investigated the ultrastructure of coronary microthrombi in heart failure (HF) due to cardiomyopathies that are unrelated to COVID-19 infection. In addition, we have investigated the role of von Willebrand factor (VWF) and PECAM-1 in microthrombus formation. We used electron microscopy to investigate the occurrence of microthrombi in patients with HF due to dilated (DCM, n = 7), inflammatory (MYO, n = 6) and ischemic (ICM, n = 7) cardiomyopathy and 4 control patients. VWF and PECAM-1 was studied by quantitative immunohistochemistry and Western blot. In comparison to control, the number of microthrombi was increased 7-9 times in HF. This was associated with a 3.5-fold increase in the number of Weibel-Palade bodies (WPb) in DCM and MYO compared to control. A fivefold increase in WPb in ICM was significantly different from control, DCM and MYO. In Western blot, VWF was increased twofold in DCM and MYO, and more than threefold in ICM. The difference between ICM and DCM and MYO was statistically significant. These results were confirmed by quantitative immunohistochemistry. Compared to control, PECAM-1 was by approximatively threefold increased in all groups of patients. This is the first study to demonstrate the occurrence of microthrombi in the failing human heart. The occurrence of microthrombi is associated with increased expression of VWF and the number of WPb, being more pronounced in ICM. These changes are likely not compensated by increases in PECAM-1 expression.

最近对 COVID-19 死者的研究发现,心脏微循环中存在微血栓。本研究调查了与 COVID-19 感染无关的心肌病导致的心力衰竭(HF)中冠状动脉微血栓的超微结构。此外,我们还研究了von Willebrand因子(VWF)和PECAM-1在微血栓形成中的作用。我们使用电子显微镜研究了扩张型心肌病(DCM,n = 7)、炎症型心肌病(MYO,n = 6)和缺血性心肌病(ICM,n = 7)导致的高频患者以及 4 名对照组患者的微血栓形成情况。通过定量免疫组化和 Western 印迹对 VWF 和 PECAM-1 进行了研究。与对照组相比,HF 患者的微血栓数量增加了 7-9 倍。与对照组相比,DCM 和 MYO 患者的 Weibel-Palade 体(WPb)数量增加了 3.5 倍。在 ICM 中,WPb 增加了 5 倍,与对照组、DCM 和 MYO 相比有显著差异。在 Western 印迹中,VWF 在 DCM 和 MYO 中增加了两倍,而在 ICM 中增加了三倍多。ICM 与 DCM 和 MYO 之间的差异具有统计学意义。定量免疫组化证实了这些结果。与对照组相比,各组患者的 PECAM-1 均增加了约三倍。这是首次证明衰竭性人类心脏中存在微血栓的研究。微血栓的出现与 VWF 表达和 WPb 数量的增加有关,在 ICM 中更为明显。PECAM-1 表达的增加可能无法弥补这些变化。
{"title":"Coronary microthrombi in the failing human heart: the role of von Willebrand factor and PECAM-1.","authors":"Sawa Kostin, Theodoros Giannakopoulos, Manfred Richter, Florian Krizanic, Benjamin Sasko, Oliver Ritter, Nikolaos Pagonas","doi":"10.1007/s11010-024-04942-0","DOIUrl":"10.1007/s11010-024-04942-0","url":null,"abstract":"<p><p>The recognition of microthrombi in the heart microcirculation has recently emerged from studies in COVID-19 decedents. The present study investigated the ultrastructure of coronary microthrombi in heart failure (HF) due to cardiomyopathies that are unrelated to COVID-19 infection. In addition, we have investigated the role of von Willebrand factor (VWF) and PECAM-1 in microthrombus formation. We used electron microscopy to investigate the occurrence of microthrombi in patients with HF due to dilated (DCM, n = 7), inflammatory (MYO, n = 6) and ischemic (ICM, n = 7) cardiomyopathy and 4 control patients. VWF and PECAM-1 was studied by quantitative immunohistochemistry and Western blot. In comparison to control, the number of microthrombi was increased 7-9 times in HF. This was associated with a 3.5-fold increase in the number of Weibel-Palade bodies (WPb) in DCM and MYO compared to control. A fivefold increase in WPb in ICM was significantly different from control, DCM and MYO. In Western blot, VWF was increased twofold in DCM and MYO, and more than threefold in ICM. The difference between ICM and DCM and MYO was statistically significant. These results were confirmed by quantitative immunohistochemistry. Compared to control, PECAM-1 was by approximatively threefold increased in all groups of patients. This is the first study to demonstrate the occurrence of microthrombi in the failing human heart. The occurrence of microthrombi is associated with increased expression of VWF and the number of WPb, being more pronounced in ICM. These changes are likely not compensated by increases in PECAM-1 expression.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3437-3446"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511743/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139913060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
P4HA3 promotes colon cancer cell escape from macrophage phagocytosis by increasing phagocytosis immune checkpoint CD47 expression. P4HA3 通过增加吞噬免疫检查点 CD47 的表达,促进结肠癌细胞逃避巨噬细胞的吞噬。
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-02-12 DOI: 10.1007/s11010-024-04927-z
Hailang Zhou, Junwei Zou, Jingli Han, Aijun Zhou, Shu Huang

Cancer immunotherapies have greatly changed the prospects for the therapy of many malignancies, including colon cancer. Macrophages as the effectors of cancer immunotherapy provide considerable promise for cancer treatment. Prolyl 4-hydroxylase subunit alpha 3 (P4HA3) plays a cancer-promoting role in a variety of cancers, including colon cancer. In the present work, we provided evidence for the first time that P4HA3 promoted colon cancer cell escape from macrophage phagocytosis, and preliminarily explored its possible molecular mechanism. Immunohistochemistry was used to detect the expression of P4HA3 in tissues. Bioinformatics methods were used to analyze the tumor public databases (including TCGA database and GEO database). Macrophage phagocytosis assay and flow cytometric analysis were used to detect the phagocytic capacity of macrophages. Western blot and qRT-PCR were used to detect the expression of related markers (such as P4HA3, CD47, CD24, IL-34, and M-CSF). First, we found that P4HA3 was significantly and highly expressed in both colon cancer tissues and cells, and that P4HA3 had a positive correlation with lymph node metastasis, Dukes stage and also strongly correlated with poorer survival. Subsequently, we found that P4HA3 was strongly associated with the macrophage infiltration level in colon cancer. Immediately we also found that decreasing P4HA3 expression promoted macrophage phagocytosis in colon cancer cells, whereas P4HA3 overexpression produced the opposite effect. Finally, we demonstrated that P4HA3 promoted the expression of cluster of differentiation 47 (CD47) in colon cancer cells. Moreover, P4HA3 caused colon cancer cells to secrete Interleukin 34 (IL34) and Macrophage colony stimulating factor (M-CSF), which further induced macrophages to differentiate to M2 type and thereby contributed to the progression of colon cancer. We have demonstrated that P4HA3-driven CD47 overexpression may act as an escape mechanism, causing colon cancer cells to evade phagocytosis from macrophages.

癌症免疫疗法大大改变了包括结肠癌在内的许多恶性肿瘤的治疗前景。巨噬细胞作为癌症免疫疗法的作用因子,为癌症治疗带来了巨大的希望。脯氨酰 4-羟化酶亚基α3(P4HA3)在包括结肠癌在内的多种癌症中发挥着促癌作用。在本研究中,我们首次提供了 P4HA3 促进结肠癌细胞逃避巨噬细胞吞噬的证据,并初步探讨了其可能的分子机制。研究采用免疫组织化学方法检测了P4HA3在组织中的表达。生物信息学方法分析了肿瘤公共数据库(包括TCGA数据库和GEO数据库)。巨噬细胞吞噬试验和流式细胞分析用于检测巨噬细胞的吞噬能力。Western 印迹和 qRT-PCR 用于检测相关标记物(如 P4HA3、CD47、CD24、IL-34 和 M-CSF)的表达。首先,我们发现 P4HA3 在结肠癌组织和细胞中均有显著的高表达,并且 P4HA3 与淋巴结转移、Dukes 分期呈正相关,与较差的生存期也密切相关。随后,我们发现 P4HA3 与结肠癌的巨噬细胞浸润水平密切相关。随即我们还发现,P4HA3 的表达减少会促进结肠癌细胞中巨噬细胞的吞噬作用,而 P4HA3 的过表达则会产生相反的效果。最后,我们证实 P4HA3 能促进结肠癌细胞中分化簇 47(CD47)的表达。此外,P4HA3 还会导致结肠癌细胞分泌白细胞介素 34(IL34)和巨噬细胞集落刺激因子(M-CSF),从而进一步诱导巨噬细胞向 M2 型分化,进而促进结肠癌的发展。我们已经证明,P4HA3 驱动的 CD47 过表达可能是一种逃逸机制,导致结肠癌细胞逃避巨噬细胞的吞噬。
{"title":"P4HA3 promotes colon cancer cell escape from macrophage phagocytosis by increasing phagocytosis immune checkpoint CD47 expression.","authors":"Hailang Zhou, Junwei Zou, Jingli Han, Aijun Zhou, Shu Huang","doi":"10.1007/s11010-024-04927-z","DOIUrl":"10.1007/s11010-024-04927-z","url":null,"abstract":"<p><p>Cancer immunotherapies have greatly changed the prospects for the therapy of many malignancies, including colon cancer. Macrophages as the effectors of cancer immunotherapy provide considerable promise for cancer treatment. Prolyl 4-hydroxylase subunit alpha 3 (P4HA3) plays a cancer-promoting role in a variety of cancers, including colon cancer. In the present work, we provided evidence for the first time that P4HA3 promoted colon cancer cell escape from macrophage phagocytosis, and preliminarily explored its possible molecular mechanism. Immunohistochemistry was used to detect the expression of P4HA3 in tissues. Bioinformatics methods were used to analyze the tumor public databases (including TCGA database and GEO database). Macrophage phagocytosis assay and flow cytometric analysis were used to detect the phagocytic capacity of macrophages. Western blot and qRT-PCR were used to detect the expression of related markers (such as P4HA3, CD47, CD24, IL-34, and M-CSF). First, we found that P4HA3 was significantly and highly expressed in both colon cancer tissues and cells, and that P4HA3 had a positive correlation with lymph node metastasis, Dukes stage and also strongly correlated with poorer survival. Subsequently, we found that P4HA3 was strongly associated with the macrophage infiltration level in colon cancer. Immediately we also found that decreasing P4HA3 expression promoted macrophage phagocytosis in colon cancer cells, whereas P4HA3 overexpression produced the opposite effect. Finally, we demonstrated that P4HA3 promoted the expression of cluster of differentiation 47 (CD47) in colon cancer cells. Moreover, P4HA3 caused colon cancer cells to secrete Interleukin 34 (IL34) and Macrophage colony stimulating factor (M-CSF), which further induced macrophages to differentiate to M2 type and thereby contributed to the progression of colon cancer. We have demonstrated that P4HA3-driven CD47 overexpression may act as an escape mechanism, causing colon cancer cells to evade phagocytosis from macrophages.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3355-3374"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139723371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional activity and morphology of isolated rat cardiac mitochondria under calcium overload. Effect of naringin. 钙超载下离体大鼠心脏线粒体的功能活性和形态。柚皮苷的影响
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-02-08 DOI: 10.1007/s11010-024-04935-z
T A Kavalenia, E A Lapshina, T V Ilyich, Hu-Cheng Zhao, I B Zavodnik

The function of mitochondria as a regulator of myocyte calcium homeostasis has been extensively discussed. The aim of the present work was further clarification of the details of modulation of the functional activity of rat cardiac mitochondria by exogenous Ca2+ ions either in the absence or in the presence of the plant flavonoid naringin. Low free Ca2+ concentrations (40-250 nM) effectively inhibited the respiratory activity of heart mitochondria, remaining unaffected the efficacy of oxygen consumption. In the presence of high exogenous Ca2+ ion concentrations (Ca2+ free was 550 µM), we observed a dramatic increase in mitochondrial heterogeneity in size and electron density, which was related to calcium-induced opening of the mitochondrial permeability transition pores (MPTP) and membrane depolarization (Ca2+free ions were from 150 to 750 µM). Naringin partially prevented Ca2+-induced cardiac mitochondrial morphological transformations (200 µM) and dose-dependently inhibited the respiratory activity of mitochondria (10-75 µM) in the absence or in the presence of calcium ions. Our data suggest that naringin (75 µM) promoted membrane potential dissipation, diminishing the potential-dependent accumulation of calcium ions by mitochondria and inhibiting calcium-induced MPTP formation. The modulating effect of the flavonoid on Ca2+-induced mitochondria alterations may be attributed to the weak-acidic nature of the flavonoid and its protonophoric/ionophoric properties. Our results show that the sensitivity of rat heart mitochondria to Ca2+ ions was much lower in the case of MPTP opening and much higher in the case of respiration inhibition as compared to liver mitochondria.

线粒体作为心肌细胞钙稳态调节器的功能已被广泛讨论。本研究的目的是进一步阐明在没有或有植物黄酮柚皮苷的情况下,外源 Ca2+ 离子对大鼠心脏线粒体功能活性的调节细节。低游离 Ca2+ 浓度(40-250 nM)可有效抑制心脏线粒体的呼吸活性,但不影响耗氧量。在外源性 Ca2+ 离子浓度较高(游离 Ca2+ 为 550 µM)的情况下,我们观察到线粒体在大小和电子密度方面的异质性急剧增加,这与钙诱导的线粒体通透性转换孔(MPTP)开放和膜去极化(游离 Ca2+ 离子为 150 至 750 µM)有关。柚皮苷部分阻止了 Ca2+诱导的心脏线粒体形态变化(200 µM),并在无钙离子或有钙离子存在的情况下,剂量依赖性地抑制了线粒体的呼吸活性(10-75 µM)。我们的数据表明,柚皮苷(75 µM)可促进膜电位消散,减少线粒体中钙离子的电位依赖性积累,抑制钙离子诱导的 MPTP 的形成。黄酮类化合物对 Ca2+ 诱导的线粒体变化的调节作用可能归因于黄酮类化合物的弱酸性及其质子/离子特性。我们的研究结果表明,与肝脏线粒体相比,大鼠心脏线粒体对 Ca2+ 离子的敏感性在 MPTP 开放的情况下要低得多,而在呼吸抑制的情况下要高得多。
{"title":"Functional activity and morphology of isolated rat cardiac mitochondria under calcium overload. Effect of naringin.","authors":"T A Kavalenia, E A Lapshina, T V Ilyich, Hu-Cheng Zhao, I B Zavodnik","doi":"10.1007/s11010-024-04935-z","DOIUrl":"10.1007/s11010-024-04935-z","url":null,"abstract":"<p><p>The function of mitochondria as a regulator of myocyte calcium homeostasis has been extensively discussed. The aim of the present work was further clarification of the details of modulation of the functional activity of rat cardiac mitochondria by exogenous Ca<sup>2+</sup> ions either in the absence or in the presence of the plant flavonoid naringin. Low free Ca<sup>2+</sup> concentrations (40-250 nM) effectively inhibited the respiratory activity of heart mitochondria, remaining unaffected the efficacy of oxygen consumption. In the presence of high exogenous Ca<sup>2+</sup> ion concentrations (Ca<sup>2+</sup> free was 550 µM), we observed a dramatic increase in mitochondrial heterogeneity in size and electron density, which was related to calcium-induced opening of the mitochondrial permeability transition pores (MPTP) and membrane depolarization (Ca<sup>2+</sup>free ions were from 150 to 750 µM). Naringin partially prevented Ca<sup>2+</sup>-induced cardiac mitochondrial morphological transformations (200 µM) and dose-dependently inhibited the respiratory activity of mitochondria (10-75 µM) in the absence or in the presence of calcium ions. Our data suggest that naringin (75 µM) promoted membrane potential dissipation, diminishing the potential-dependent accumulation of calcium ions by mitochondria and inhibiting calcium-induced MPTP formation. The modulating effect of the flavonoid on Ca<sup>2+</sup>-induced mitochondria alterations may be attributed to the weak-acidic nature of the flavonoid and its protonophoric/ionophoric properties. Our results show that the sensitivity of rat heart mitochondria to Ca<sup>2+</sup> ions was much lower in the case of MPTP opening and much higher in the case of respiration inhibition as compared to liver mitochondria.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3329-3340"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139707228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RETRACTED ARTICLE: Upregulation of MCL-1 by LUCAT1 through interacting with SRSF1 promotes the migration and invasion in non-small cell lung carcinoma. LUCAT1通过与SRSF1相互作用上调MCL-1促进非小细胞肺癌的迁移和侵袭。
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2023-09-25 DOI: 10.1007/s11010-023-04851-8
Fang Fang, Mei Zhao, Xiaowei Jin, Zhixin Dong, Jiaxiao Wang, Jinming Meng, Sheng Xie, Wei Shi
{"title":"RETRACTED ARTICLE: Upregulation of MCL-1 by LUCAT1 through interacting with SRSF1 promotes the migration and invasion in non-small cell lung carcinoma.","authors":"Fang Fang, Mei Zhao, Xiaowei Jin, Zhixin Dong, Jiaxiao Wang, Jinming Meng, Sheng Xie, Wei Shi","doi":"10.1007/s11010-023-04851-8","DOIUrl":"10.1007/s11010-023-04851-8","url":null,"abstract":"","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3305"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41163993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long non-coding RNAs in cancer: multifaceted roles and potential targets for immunotherapy. 癌症中的长非编码 RNA:多方面的作用和免疫疗法的潜在靶点。
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-02-28 DOI: 10.1007/s11010-024-04933-1
Lokesh K Kadian, Deepika Verma, Neelam Lohani, Ritu Yadav, Shalu Ranga, Gulshan Gulshan, Sanghapriya Pal, Kiran Kumari, Shyam S Chauhan

Cancer remains a major global health concern with high mortality rates mainly due to late diagnosis and poor prognosis. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression in human cancer, functioning through various mechanisms including as competing endogenous RNAs (ceRNAs) and indirectly regulating miRNA expression. LncRNAs have been found to have both oncogenic and tumor-suppressive roles in cancer, with the former promoting cancer cell proliferation, migration, invasion, and poor prognosis. Recent research has shown that lncRNAs are expressed in various immune cells and are involved in cancer cell immune escape and the modulation of the tumor microenvironment, thus highlighting their potential as targets for cancer immunotherapy. Targeting lncRNAs in cancer or immune cells could enhance the anti-tumor immune response and improve cancer immunotherapy outcomes. However, further research is required to fully understand the functional roles of lncRNAs in cancer and the immune system and their potential as targets for cancer immunotherapy. This review offers a comprehensive examination of the multifaceted roles of lncRNAs in human cancers, with a focus on their potential as targets for cancer immunotherapy. By exploring the intricate mechanisms underlying lncRNA-mediated regulation of cancer cell proliferation, invasion, and immune evasion, we provide insights into the diverse therapeutic applications of these molecules.

癌症仍然是全球关注的主要健康问题,其死亡率高主要是由于诊断晚和预后差。长非编码 RNA(lncRNA)正在成为人类癌症基因表达的关键调控因子,通过各种机制发挥作用,包括作为竞争性内源性 RNA(ceRNA)和间接调控 miRNA 的表达。研究发现,LncRNAs 在癌症中具有致癌和抑癌作用,前者可促进癌细胞增殖、迁移、侵袭和不良预后。最新研究表明,lncRNAs 在各种免疫细胞中均有表达,并参与癌细胞的免疫逃逸和肿瘤微环境的调控,从而凸显了其作为癌症免疫疗法靶点的潜力。以癌症或免疫细胞中的lncRNAs为靶点,可以增强抗肿瘤免疫反应,改善癌症免疫治疗效果。然而,要全面了解 lncRNA 在癌症和免疫系统中的功能作用及其作为癌症免疫疗法靶点的潜力,还需要进一步的研究。本综述全面探讨了 lncRNAs 在人类癌症中的多方面作用,重点关注它们作为癌症免疫疗法靶点的潜力。通过探讨lncRNA介导的癌细胞增殖、侵袭和免疫逃避调控的复杂机制,我们深入探讨了这些分子的各种治疗应用。
{"title":"Long non-coding RNAs in cancer: multifaceted roles and potential targets for immunotherapy.","authors":"Lokesh K Kadian, Deepika Verma, Neelam Lohani, Ritu Yadav, Shalu Ranga, Gulshan Gulshan, Sanghapriya Pal, Kiran Kumari, Shyam S Chauhan","doi":"10.1007/s11010-024-04933-1","DOIUrl":"10.1007/s11010-024-04933-1","url":null,"abstract":"<p><p>Cancer remains a major global health concern with high mortality rates mainly due to late diagnosis and poor prognosis. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression in human cancer, functioning through various mechanisms including as competing endogenous RNAs (ceRNAs) and indirectly regulating miRNA expression. LncRNAs have been found to have both oncogenic and tumor-suppressive roles in cancer, with the former promoting cancer cell proliferation, migration, invasion, and poor prognosis. Recent research has shown that lncRNAs are expressed in various immune cells and are involved in cancer cell immune escape and the modulation of the tumor microenvironment, thus highlighting their potential as targets for cancer immunotherapy. Targeting lncRNAs in cancer or immune cells could enhance the anti-tumor immune response and improve cancer immunotherapy outcomes. However, further research is required to fully understand the functional roles of lncRNAs in cancer and the immune system and their potential as targets for cancer immunotherapy. This review offers a comprehensive examination of the multifaceted roles of lncRNAs in human cancers, with a focus on their potential as targets for cancer immunotherapy. By exploring the intricate mechanisms underlying lncRNA-mediated regulation of cancer cell proliferation, invasion, and immune evasion, we provide insights into the diverse therapeutic applications of these molecules.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3229-3254"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139983279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutrophil extracellular traps: a catalyst for atherosclerosis. 中性粒细胞胞外捕获物:动脉粥样硬化的催化剂。
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-02-24 DOI: 10.1007/s11010-024-04931-3
Yinyu Wang, Cuiping Wang, Jiayan Li

Neutrophil extracellular traps (NETs) are network-like structures released by activated neutrophils. They consist mainly of double-stranded DNA, histones, and neutrophil granule proteins. Continuous release of NETs in response to external stimuli leads to activation of surrounding platelets and monocytes/macrophages, resulting in damage to endothelial cells (EC) and vascular smooth muscle cells (VSMC). Some clinical trials have demonstrated the association between NETs and the severity and prognosis of atherosclerosis. Furthermore, experimental findings have shed light on the molecular mechanisms by which NETs contribute to atherogenesis. NETs play a significant role in the formation of atherosclerotic plaques. This review focuses on recent advancements in the understanding of the relationship between NETs and atherosclerosis. It explores various aspects, including the formation of NETs in atherosclerosis, clinical trials investigating NET-induced atherosclerosis, the mechanisms by which NETs promote atherogenesis, and the translational implications of NETs. Ultimately, we aim to propose new research directions for the diagnosis and treatment of atherosclerosis.

中性粒细胞胞外捕获物(NET)是活化的中性粒细胞释放的网络状结构。它们主要由双链 DNA、组蛋白和中性粒细胞颗粒蛋白组成。嗜中性粒细胞捕获物在外界刺激下不断释放,导致周围的血小板和单核细胞/巨噬细胞被激活,从而对内皮细胞(EC)和血管平滑肌细胞(VSMC)造成损伤。一些临床试验表明,NET 与动脉粥样硬化的严重程度和预后有关。此外,实验结果还揭示了 NETs 促成动脉粥样硬化的分子机制。NET 在动脉粥样硬化斑块的形成过程中发挥着重要作用。本综述重点介绍了在理解 NET 与动脉粥样硬化之间关系方面的最新进展。它探讨了各个方面,包括动脉粥样硬化中NET的形成、研究NET诱导动脉粥样硬化的临床试验、NET促进动脉粥样硬化形成的机制以及NET的转化意义。最终,我们希望为动脉粥样硬化的诊断和治疗提出新的研究方向。
{"title":"Neutrophil extracellular traps: a catalyst for atherosclerosis.","authors":"Yinyu Wang, Cuiping Wang, Jiayan Li","doi":"10.1007/s11010-024-04931-3","DOIUrl":"10.1007/s11010-024-04931-3","url":null,"abstract":"<p><p>Neutrophil extracellular traps (NETs) are network-like structures released by activated neutrophils. They consist mainly of double-stranded DNA, histones, and neutrophil granule proteins. Continuous release of NETs in response to external stimuli leads to activation of surrounding platelets and monocytes/macrophages, resulting in damage to endothelial cells (EC) and vascular smooth muscle cells (VSMC). Some clinical trials have demonstrated the association between NETs and the severity and prognosis of atherosclerosis. Furthermore, experimental findings have shed light on the molecular mechanisms by which NETs contribute to atherogenesis. NETs play a significant role in the formation of atherosclerotic plaques. This review focuses on recent advancements in the understanding of the relationship between NETs and atherosclerosis. It explores various aspects, including the formation of NETs in atherosclerosis, clinical trials investigating NET-induced atherosclerosis, the mechanisms by which NETs promote atherogenesis, and the translational implications of NETs. Ultimately, we aim to propose new research directions for the diagnosis and treatment of atherosclerosis.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3213-3227"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139944306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WDR12/RAC1 axis promoted proliferation and anti-apoptosis in colorectal cancer cells. WDR12/RAC1 轴促进了结直肠癌细胞的增殖和抗凋亡。
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-02-11 DOI: 10.1007/s11010-024-04937-x
Su Wen, Xueqing Huang, Liping Xiong, Hao Zeng, Shuang Wu, Kangli An, Jing Bai, Zhipeng Zhou, Tiejun Yin

Background: WD repeat domain 12 (WDR12) plays a crucial role in the ribosome biogenesis pathway. However, its biological function in colorectal cancer (CRC) remains poorly understood. Therefore, this study aims to investigate the roles of WDR12 in the occurrence and progression of CRC, as well as its underlying mechanisms.

Methods: The expression of WDR12 was assessed through The Cancer Genome Atlas (TCGA) and the Human Protein Atlas (HPA) database. Functional experiments including Celigo assay, MTT assay, and Caspase-3/7 assay were conducted to validate the role of WDR12 in the malignant progression of CRC. Additionally, mRNA chip-sequencing and ingenuity pathway analysis (IPA) were performed to identify the molecular mechanism.

Results: WDR12 expression was significantly upregulated in CRC tissues compared to normal colorectal tissues. Knockdown of WDR12 reduced proliferation and promoted apoptosis of CRC cell lines in vitro and in vivo experiments. Furthermore, WDR12 expression had a significantly inverse association with diseases and functions, including cancer, cell cycle, DNA replication, recombination, cellular growth, proliferation and repair, as revealed by IPA analysis of mRNA chip-sequencing data. Moreover, the activation of cell cycle checkpoint kinases proteins in the cell cycle checkpoint control signaling pathway was enriched in the WDR12 knockdown CRC cell lines. Additionally, downregulation of rac family small GTPase 1 (RAC1) occurred upon WDR12 knockdown, thereby facilitating the proliferation and anti-apoptosis of CRC cells.

Conclusion: Our study demonstrates that the WDR12/RAC1 axis promotes tumor progression in CRC. Therefore, WDR12 may serve as a novel oncogene and a potential target for individualized therapy in CRC. These findings provide an experimental foundation for the clinical development of drugs targeting the WDR12/RAC1 axis.

背景:WD 重复结构域 12(WDR12)在核糖体生物生成途径中起着至关重要的作用。然而,人们对其在结直肠癌(CRC)中的生物学功能仍知之甚少。因此,本研究旨在探讨 WDR12 在 CRC 发生和发展中的作用及其内在机制:方法:通过癌症基因组图谱(TCGA)和人类蛋白质图谱(HPA)数据库评估 WDR12 的表达。方法:通过癌症基因组图谱(TCGA)和人类蛋白质图谱(HPA)数据库评估了WDR12的表达,并进行了Celigo实验、MTT实验和Caspase-3/7实验等功能实验,以验证WDR12在CRC恶性进展中的作用。此外,还进行了mRNA芯片测序和巧妙通路分析(IPA),以确定其分子机制:结果:与正常结直肠组织相比,WDR12在CRC组织中的表达明显上调。在体外和体内实验中,敲除 WDR12 可减少 CRC 细胞株的增殖并促进其凋亡。此外,通过对 mRNA 芯片测序数据进行 IPA 分析发现,WDR12 的表达与癌症、细胞周期、DNA 复制、重组、细胞生长、增殖和修复等疾病和功能有显著的反相关性。此外,在WDR12基因敲除的CRC细胞系中,细胞周期检查点控制信号通路中的细胞周期检查点激酶蛋白被激活。此外,WDR12敲除后,rac家族小GTP酶1(RAC1)发生下调,从而促进了CRC细胞的增殖和抗凋亡:我们的研究表明,WDR12/RAC1 轴促进了 CRC 的肿瘤进展。因此,WDR12 可作为一种新型致癌基因和个体化治疗 CRC 的潜在靶点。这些发现为针对 WDR12/RAC1 轴的药物临床开发提供了实验基础。
{"title":"WDR12/RAC1 axis promoted proliferation and anti-apoptosis in colorectal cancer cells.","authors":"Su Wen, Xueqing Huang, Liping Xiong, Hao Zeng, Shuang Wu, Kangli An, Jing Bai, Zhipeng Zhou, Tiejun Yin","doi":"10.1007/s11010-024-04937-x","DOIUrl":"10.1007/s11010-024-04937-x","url":null,"abstract":"<p><strong>Background: </strong>WD repeat domain 12 (WDR12) plays a crucial role in the ribosome biogenesis pathway. However, its biological function in colorectal cancer (CRC) remains poorly understood. Therefore, this study aims to investigate the roles of WDR12 in the occurrence and progression of CRC, as well as its underlying mechanisms.</p><p><strong>Methods: </strong>The expression of WDR12 was assessed through The Cancer Genome Atlas (TCGA) and the Human Protein Atlas (HPA) database. Functional experiments including Celigo assay, MTT assay, and Caspase-3/7 assay were conducted to validate the role of WDR12 in the malignant progression of CRC. Additionally, mRNA chip-sequencing and ingenuity pathway analysis (IPA) were performed to identify the molecular mechanism.</p><p><strong>Results: </strong>WDR12 expression was significantly upregulated in CRC tissues compared to normal colorectal tissues. Knockdown of WDR12 reduced proliferation and promoted apoptosis of CRC cell lines in vitro and in vivo experiments. Furthermore, WDR12 expression had a significantly inverse association with diseases and functions, including cancer, cell cycle, DNA replication, recombination, cellular growth, proliferation and repair, as revealed by IPA analysis of mRNA chip-sequencing data. Moreover, the activation of cell cycle checkpoint kinases proteins in the cell cycle checkpoint control signaling pathway was enriched in the WDR12 knockdown CRC cell lines. Additionally, downregulation of rac family small GTPase 1 (RAC1) occurred upon WDR12 knockdown, thereby facilitating the proliferation and anti-apoptosis of CRC cells.</p><p><strong>Conclusion: </strong>Our study demonstrates that the WDR12/RAC1 axis promotes tumor progression in CRC. Therefore, WDR12 may serve as a novel oncogene and a potential target for individualized therapy in CRC. These findings provide an experimental foundation for the clinical development of drugs targeting the WDR12/RAC1 axis.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3341-3354"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139717737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerobic exercise mitigates high-fat diet-induced cardiac dysfunction, pyroptosis, and inflammation by inhibiting STING-NLRP3 signaling pathway. 有氧运动通过抑制 STING-NLRP3 信号通路,减轻高脂饮食引起的心脏功能障碍、热蛋白沉积和炎症。
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-02-22 DOI: 10.1007/s11010-024-04950-0
Zujie Xu, Zheying Ma, Xiaoqin Zhao, Bing Zhang

Obesity has been identified as an independent risk factor for cardiovascular disease. Recent reports have highlighted the significance of stimulator of interferon genes (STING)-NOD-like receptor protein 3 (NLRP3) signaling pathway mediated pyroptosis, and inflammation in cardiovascular disease. Previous studies have demonstrated that exercise training effectively prevents cardiac pyroptosis and inflammation in high-fat diet (HFD)-fed mice. However, it is currently unknown whether exercise reduces pyroptosis and inflammation in obese hearts by targeting the STING-NLRP3 signaling pathway. We investigated the impact of an 8-week aerobic exercise regimen on cardiac function, pyroptosis, inflammation, and the STING-NLRP3 signaling pathway in HFD-induced obese mice. Additionally, to explore the underlying mechanism of STING in exercise-mediated cardioprotection, we administered intraperitoneal injections of the STING agonist diABZI to the mice. Furthermore, to investigate the role of the STING-NLRP3 signaling pathway in HFD-induced cardiac dysfunction, we administered adeno-associated virus 9 (AAV9) encoding shRNA targeting STING (shRNA-STING) via tail vein injection to knockdown STING expression specifically in mouse hearts. After one week of AAV9 injection, we intraperitoneally injected nigericin as an NLRP3 agonist. We first found that aerobic exercise effectively suppressed HFD-mediated upregulation of STING and NLRP3 in the hearts. Moreover, we demonstrated that the protective effect of aerobic exercise in HFD-induced cardiac dysfunction, pyroptosis, and inflammation was impaired by stimulating the STING pathway using diABZI. Additionally, activation of the NLRP3 with nigericin abolished the ameliorative effect of STING deficiency in HFD-induced cardiac dysfunction, pyroptosis, and inflammation. Based on these findings, we concluded that 8-week aerobic exercise alleviates HFD-induced cardiac dysfunction, pyroptosis, and inflammation by targeting STING-NLRP3 signaling pathway. Inhibition of STING-NLRP3 signaling pathway may serve as a promising therapeutic strategy against obesity-induced cardiomyopathy.

肥胖已被确定为心血管疾病的独立风险因素。最近的报告强调了干扰素基因刺激器(STING)-NOD 样受体蛋白 3(NLRP3)信号通路介导的热蛋白沉积和炎症在心血管疾病中的重要作用。先前的研究表明,运动训练能有效预防高脂饮食(HFD)喂养小鼠的心脏脓毒症和炎症。然而,目前尚不清楚运动是否能通过靶向 STING-NLRP3 信号通路来减少肥胖心脏的热蛋白沉积和炎症。我们研究了为期8周的有氧运动对HFD诱导的肥胖小鼠心脏功能、热蛋白沉积、炎症和STING-NLRP3信号通路的影响。此外,为了探索 STING 在运动介导的心脏保护中的潜在机制,我们给小鼠腹腔注射了 STING 激动剂 diABZI。此外,为了研究 STING-NLRP3 信号通路在高密度脂蛋白胆固醇诱导的心脏功能障碍中的作用,我们通过尾静脉注射编码 STING 靶向 shRNA 的腺相关病毒 9(AAV9),特异性地敲除 STING 在小鼠心脏中的表达。注射AAV9一周后,我们腹腔注射NLRP3激动剂尼格列汀。我们首先发现,有氧运动能有效抑制 HFD 介导的 STING 和 NLRP3 在心脏中的上调。此外,我们还证明了有氧运动对 HFD 诱导的心脏功能障碍、脓毒血症和炎症的保护作用会因使用 diABZI 刺激 STING 通路而受损。此外,使用尼格列汀激活 NLRP3 可消除 STING 缺乏对高密度脂蛋白胆固醇诱导的心脏功能障碍、热蛋白沉积和炎症的改善作用。基于这些发现,我们得出结论:8周的有氧运动通过靶向STING-NLRP3信号通路缓解了HFD诱导的心脏功能障碍、热蛋白沉积和炎症。抑制 STING-NLRP3 信号通路可作为肥胖诱导的心肌病的一种有前景的治疗策略。
{"title":"Aerobic exercise mitigates high-fat diet-induced cardiac dysfunction, pyroptosis, and inflammation by inhibiting STING-NLRP3 signaling pathway.","authors":"Zujie Xu, Zheying Ma, Xiaoqin Zhao, Bing Zhang","doi":"10.1007/s11010-024-04950-0","DOIUrl":"10.1007/s11010-024-04950-0","url":null,"abstract":"<p><p>Obesity has been identified as an independent risk factor for cardiovascular disease. Recent reports have highlighted the significance of stimulator of interferon genes (STING)-NOD-like receptor protein 3 (NLRP3) signaling pathway mediated pyroptosis, and inflammation in cardiovascular disease. Previous studies have demonstrated that exercise training effectively prevents cardiac pyroptosis and inflammation in high-fat diet (HFD)-fed mice. However, it is currently unknown whether exercise reduces pyroptosis and inflammation in obese hearts by targeting the STING-NLRP3 signaling pathway. We investigated the impact of an 8-week aerobic exercise regimen on cardiac function, pyroptosis, inflammation, and the STING-NLRP3 signaling pathway in HFD-induced obese mice. Additionally, to explore the underlying mechanism of STING in exercise-mediated cardioprotection, we administered intraperitoneal injections of the STING agonist diABZI to the mice. Furthermore, to investigate the role of the STING-NLRP3 signaling pathway in HFD-induced cardiac dysfunction, we administered adeno-associated virus 9 (AAV9) encoding shRNA targeting STING (shRNA-STING) via tail vein injection to knockdown STING expression specifically in mouse hearts. After one week of AAV9 injection, we intraperitoneally injected nigericin as an NLRP3 agonist. We first found that aerobic exercise effectively suppressed HFD-mediated upregulation of STING and NLRP3 in the hearts. Moreover, we demonstrated that the protective effect of aerobic exercise in HFD-induced cardiac dysfunction, pyroptosis, and inflammation was impaired by stimulating the STING pathway using diABZI. Additionally, activation of the NLRP3 with nigericin abolished the ameliorative effect of STING deficiency in HFD-induced cardiac dysfunction, pyroptosis, and inflammation. Based on these findings, we concluded that 8-week aerobic exercise alleviates HFD-induced cardiac dysfunction, pyroptosis, and inflammation by targeting STING-NLRP3 signaling pathway. Inhibition of STING-NLRP3 signaling pathway may serve as a promising therapeutic strategy against obesity-induced cardiomyopathy.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3459-3470"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139931973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New insights of DsbA-L in the pathogenesis of metabolic diseases. DsbA-L 在代谢性疾病发病机制中的新见解。
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-03-02 DOI: 10.1007/s11010-024-04964-8
Siqi Li, Jinfa Wan, Zhenyu Peng, Qiong Huang, Baimei He

Metabolic diseases, such as obesity, diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD), are abnormal conditions that result from disturbances of metabolism. With the improvement of living conditions, the morbidity and mortality rates of metabolic diseases are steadily rising, posing a significant threat to human health worldwide. Therefore, identifying novel effective targets for metabolic diseases is crucial. Accumulating evidence has indicated that disulfide bond A oxidoreductase-like protein (DsbA-L) delays the development of metabolic diseases. However, the underlying mechanisms of DsbA-L in metabolic diseases remain unclear. In this review, we will discuss the roles of DsbA-L in the pathogenesis of metabolic diseases, including obesity, diabetes mellitus, and NAFLD, and highlight the potential mechanisms. These findings suggest that DsbA-L might provide a novel therapeutic strategy for metabolic diseases.

代谢性疾病,如肥胖症、糖尿病和非酒精性脂肪肝(NAFLD),是新陈代谢紊乱导致的异常病症。随着生活条件的改善,代谢性疾病的发病率和死亡率持续上升,对全球人类健康构成重大威胁。因此,寻找新的有效靶点治疗代谢性疾病至关重要。越来越多的证据表明,二硫键 A 氧化还原酶样蛋白(DsbA-L)能延缓代谢性疾病的发生。然而,DsbA-L 在代谢性疾病中的潜在机制仍不清楚。在这篇综述中,我们将讨论 DsbA-L 在肥胖症、糖尿病和非酒精性脂肪肝等代谢性疾病的发病机制中的作用,并强调其潜在机制。这些发现表明,DsbA-L 可能为代谢性疾病提供一种新的治疗策略。
{"title":"New insights of DsbA-L in the pathogenesis of metabolic diseases.","authors":"Siqi Li, Jinfa Wan, Zhenyu Peng, Qiong Huang, Baimei He","doi":"10.1007/s11010-024-04964-8","DOIUrl":"10.1007/s11010-024-04964-8","url":null,"abstract":"<p><p>Metabolic diseases, such as obesity, diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD), are abnormal conditions that result from disturbances of metabolism. With the improvement of living conditions, the morbidity and mortality rates of metabolic diseases are steadily rising, posing a significant threat to human health worldwide. Therefore, identifying novel effective targets for metabolic diseases is crucial. Accumulating evidence has indicated that disulfide bond A oxidoreductase-like protein (DsbA-L) delays the development of metabolic diseases. However, the underlying mechanisms of DsbA-L in metabolic diseases remain unclear. In this review, we will discuss the roles of DsbA-L in the pathogenesis of metabolic diseases, including obesity, diabetes mellitus, and NAFLD, and highlight the potential mechanisms. These findings suggest that DsbA-L might provide a novel therapeutic strategy for metabolic diseases.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3293-3303"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melatonin antagonizes oxidative stress-induced apoptosis in retinal ganglion cells through activating the thioredoxin-1 pathway. 褪黑素通过激活硫代毒素-1途径拮抗氧化应激诱导的视网膜神经节细胞凋亡。
IF 3.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-02-14 DOI: 10.1007/s11010-024-04924-2
Shan Gao, Qiaochu Cheng, Yaguang Hu, Xiaojuan Fan, Chen Liang, Chen Niu, Qianyan Kang, Ting Wei

This study aimed to explore the role of melatonin in oxidative stress-induced injury on retinal ganglion cells and the underlying mechanisms. The immortalized RGC-5 cells were treated with H2O2 to induce oxidative injury. Cell viability was measured by Cell Counting Kit-8, and apoptosis was determined by flow cytometry and western blot assays. Reactive oxygen species (ROS), lactate dehydrogenase (LDH), and malondialdehyde (MDA) levels were examined to evaluate oxidative stress levels. In addition, Thioredoxin-1 (Trx1) was silenced in RGC-5 cells using small interfering RNA followed by signaling pathway examination to explore the underlying mechanisms of melatonin in alleviating oxidative injury. Melatonin pre-treatment significantly alleviated H2O2-induced apoptosis in RGC-5 cells. Melatonin also markedly reversed the upregulation of cleaved-caspase 3, cleaved-caspase 9, and Bax expression and downregulation of Bcl-2 expression induced by H2O2. Further analyses presented that melatonin significantly attenuated the increase of ROS, LDH, and MDA levels in RGC-5 cells after H2O2 treatment. Melatonin also abolished the downregulated expression of Superoxide dismutase type 1, Trx1, and Thioredoxin reductase 1, and the reduced activity of thioredoxin reductase in RGC-5 cells after H2O2 treatment. Notably, Trx1 knockdown significantly mitigated the protective effect of melatonin in alleviating H2O2-induced apoptosis and oxidative stress, while administration of compound C, a common inhibitor of c-Jun N-terminal kinase (JNK) signaling, partially reversed the effect of Trx1 silencing, thereby ameliorating the apoptosis and oxidative injury induced by H2O2 in RGC-5 cells. Melatonin could significantly alleviate oxidative stress-induced injury of retinal ganglion cells via modulating Trx1-mediated JNK signaling pathway.

本研究旨在探讨褪黑激素在氧化应激诱导的视网膜神经节细胞损伤中的作用及其内在机制。用 H2O2 处理永生化的 RGC-5 细胞以诱导氧化损伤。细胞活力由细胞计数试剂盒-8测定,细胞凋亡由流式细胞术和Western印迹测定。通过检测活性氧(ROS)、乳酸脱氢酶(LDH)和丙二醛(MDA)水平来评估氧化应激水平。此外,还利用小干扰 RNA 沉默了 RGC-5 细胞中的硫氧还蛋白-1 (Trx1),然后对信号通路进行了检查,以探索褪黑素减轻氧化损伤的潜在机制。褪黑素预处理明显减轻了H2O2诱导的RGC-5细胞凋亡。褪黑素还能明显逆转H2O2诱导的裂解天冬酶3、裂解天冬酶9和Bax表达的上调以及Bcl-2表达的下调。进一步的分析表明,褪黑素能显著降低H2O2处理后RGC-5细胞中ROS、LDH和MDA水平的升高。褪黑素还抑制了 H2O2 处理后 RGC-5 细胞中超氧化物歧化酶 1 型、Trx1 和硫氧还原酶 1 表达的下调,以及硫氧还原酶活性的降低。值得注意的是,Trx1基因敲除明显减轻了褪黑激素在缓解H2O2诱导的细胞凋亡和氧化应激方面的保护作用,而服用c-Jun N-末端激酶(JNK)信号转导的常见抑制剂化合物C则部分逆转了Trx1基因沉默的作用,从而改善了H2O2诱导的RGC-5细胞凋亡和氧化损伤。褪黑素可通过调节Trx1介导的JNK信号通路,明显减轻氧化应激诱导的视网膜神经节细胞损伤。
{"title":"Melatonin antagonizes oxidative stress-induced apoptosis in retinal ganglion cells through activating the thioredoxin-1 pathway.","authors":"Shan Gao, Qiaochu Cheng, Yaguang Hu, Xiaojuan Fan, Chen Liang, Chen Niu, Qianyan Kang, Ting Wei","doi":"10.1007/s11010-024-04924-2","DOIUrl":"10.1007/s11010-024-04924-2","url":null,"abstract":"<p><p>This study aimed to explore the role of melatonin in oxidative stress-induced injury on retinal ganglion cells and the underlying mechanisms. The immortalized RGC-5 cells were treated with H<sub>2</sub>O<sub>2</sub> to induce oxidative injury. Cell viability was measured by Cell Counting Kit-8, and apoptosis was determined by flow cytometry and western blot assays. Reactive oxygen species (ROS), lactate dehydrogenase (LDH), and malondialdehyde (MDA) levels were examined to evaluate oxidative stress levels. In addition, Thioredoxin-1 (Trx1) was silenced in RGC-5 cells using small interfering RNA followed by signaling pathway examination to explore the underlying mechanisms of melatonin in alleviating oxidative injury. Melatonin pre-treatment significantly alleviated H<sub>2</sub>O<sub>2</sub>-induced apoptosis in RGC-5 cells. Melatonin also markedly reversed the upregulation of cleaved-caspase 3, cleaved-caspase 9, and Bax expression and downregulation of Bcl-2 expression induced by H<sub>2</sub>O<sub>2</sub>. Further analyses presented that melatonin significantly attenuated the increase of ROS, LDH, and MDA levels in RGC-5 cells after H<sub>2</sub>O<sub>2</sub> treatment. Melatonin also abolished the downregulated expression of Superoxide dismutase type 1, Trx1, and Thioredoxin reductase 1, and the reduced activity of thioredoxin reductase in RGC-5 cells after H<sub>2</sub>O<sub>2</sub> treatment. Notably, Trx1 knockdown significantly mitigated the protective effect of melatonin in alleviating H<sub>2</sub>O<sub>2</sub>-induced apoptosis and oxidative stress, while administration of compound C, a common inhibitor of c-Jun N-terminal kinase (JNK) signaling, partially reversed the effect of Trx1 silencing, thereby ameliorating the apoptosis and oxidative injury induced by H<sub>2</sub>O<sub>2</sub> in RGC-5 cells. Melatonin could significantly alleviate oxidative stress-induced injury of retinal ganglion cells via modulating Trx1-mediated JNK signaling pathway.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3393-3404"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular and Cellular Biochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1