Applications of 3D printing in medicine: A review

Chensong Dong, Marko Petrovic, Ian J. Davies
{"title":"Applications of 3D printing in medicine: A review","authors":"Chensong Dong,&nbsp;Marko Petrovic,&nbsp;Ian J. Davies","doi":"10.1016/j.stlm.2024.100149","DOIUrl":null,"url":null,"abstract":"<div><p>3D printing, or additive manufacturing, has transformed various industries with its layer-by-layer fabrication approach. In medicine, 3D printing, or biofabrication, has seen significant advancements, particularly in the creation of patient-specific medical models and custom-made drug tablets. Bioprinting, a key aspect of biofabrication, encompasses three approaches: biomimicry, autonomous self-assembly, and microtissues, each with its unique advantages and disadvantages. This comprehensive review explores the merits and limitations of these bioprinting approaches and outlines the three main phases of the entire bioprinting process: pre-processing, processing, and post-processing. By enhancing patients’ quality of life, reducing healthcare costs, and tapping into the global medical device market, biofabrication technologies hold immense promise for the future of medicine. This literature review focuses on the applications of 3D printing technologies in creating medical devices, including bone tissues, joint tissues, 3D printed tablets, and medical models.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666964124000080/pdfft?md5=15cfa452bb14e83f9962e24405463f3e&pid=1-s2.0-S2666964124000080-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of 3D printed medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666964124000080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

3D printing, or additive manufacturing, has transformed various industries with its layer-by-layer fabrication approach. In medicine, 3D printing, or biofabrication, has seen significant advancements, particularly in the creation of patient-specific medical models and custom-made drug tablets. Bioprinting, a key aspect of biofabrication, encompasses three approaches: biomimicry, autonomous self-assembly, and microtissues, each with its unique advantages and disadvantages. This comprehensive review explores the merits and limitations of these bioprinting approaches and outlines the three main phases of the entire bioprinting process: pre-processing, processing, and post-processing. By enhancing patients’ quality of life, reducing healthcare costs, and tapping into the global medical device market, biofabrication technologies hold immense promise for the future of medicine. This literature review focuses on the applications of 3D printing technologies in creating medical devices, including bone tissues, joint tissues, 3D printed tablets, and medical models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维打印在医学中的应用:综述
三维打印(或称快速成型制造)以其逐层制造的方法改变了各行各业。在医学领域,3D 打印或生物制造技术取得了重大进展,尤其是在创建病人专用医疗模型和定制药物片剂方面。生物打印是生物制造的一个重要方面,包括三种方法:生物模仿、自主自组装和微组织,每种方法都有其独特的优缺点。本综述探讨了这些生物打印方法的优点和局限性,并概述了整个生物打印过程的三个主要阶段:预处理、处理和后处理。通过提高患者的生活质量、降低医疗成本和开拓全球医疗器械市场,生物制造技术为未来医学的发展带来了巨大的希望。本文献综述重点介绍 3D 打印技术在创建医疗设备方面的应用,包括骨组织、关节组织、3D 打印药片和医疗模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of 3D printed medicine
Annals of 3D printed medicine Medicine and Dentistry (General), Materials Science (General)
CiteScore
4.70
自引率
0.00%
发文量
0
审稿时长
131 days
期刊最新文献
A novel approach to hallucal sesamoid pathology utilizing a 3D printed patient specific total sesamoid replacement implant: Case series Selective laser sintering at the Point-of-Care 3D printing laboratory in hospitals for cranio-maxillo-facial surgery: A further step into industrial additive manufacturing made available to clinicians Editorial Board Contents 3D-printed β-TCP/Ti6Al4V composite scaffolds for bone regeneration: Process parameter optimization and evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1