Simone A A Romariz, Viviam Sanabria, Karina Ribeiro da Silva, Miguel L Quintella, Bruna A G de Melo, Marimélia Porcionatto, Danilo Candido de Almeida, Beatriz M Longo
{"title":"High Concentrations of Cannabidiol Induce Neurotoxicity in Neurosphere Culture System.","authors":"Simone A A Romariz, Viviam Sanabria, Karina Ribeiro da Silva, Miguel L Quintella, Bruna A G de Melo, Marimélia Porcionatto, Danilo Candido de Almeida, Beatriz M Longo","doi":"10.1007/s12640-024-00692-5","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have demonstrated that cannabinoids are potentially effective in the treatment of various neurological conditions, and cannabidiol (CBD), one of the most studied compounds, has been proposed as a non-toxic option. However, the adverse effects of CBD on neurodevelopmental processes have rarely been studied in cell culture systems. To better understand CBD's influence on neurodevelopment, we exposed neural progenitor cells (NPCs) to different concentrations of CBD (1 µM, 5 µM, and 10 µM). We assessed the morphology, migration, differentiation, cell death, and gene expression in 2D and 3D bioprinted models to stimulate physiological conditions more effectively. Our results showed that CBD was more toxic at higher concentrations (5 µM and 10 µM) and affected the viability of NPCs than at lower concentrations (1 µM), in both 2D and 3D models. Moreover, our study revealed that higher concentrations of CBD drastically reduced the size of neurospheres and the number of NPCs within neurospheres, impaired the morphology and mobility of neurons and astrocytes after differentiation, and reduced neurite sprouting. Interestingly, we also found that CBD alters cellular metabolism by influencing the expression of glycolytic and β-oxidative enzymes in the early and late stages of metabolic pathways. Therefore, our study demonstrated that higher concentrations of CBD promote important changes in cellular functions that are crucial during CNS development.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 1","pages":"14"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-024-00692-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies have demonstrated that cannabinoids are potentially effective in the treatment of various neurological conditions, and cannabidiol (CBD), one of the most studied compounds, has been proposed as a non-toxic option. However, the adverse effects of CBD on neurodevelopmental processes have rarely been studied in cell culture systems. To better understand CBD's influence on neurodevelopment, we exposed neural progenitor cells (NPCs) to different concentrations of CBD (1 µM, 5 µM, and 10 µM). We assessed the morphology, migration, differentiation, cell death, and gene expression in 2D and 3D bioprinted models to stimulate physiological conditions more effectively. Our results showed that CBD was more toxic at higher concentrations (5 µM and 10 µM) and affected the viability of NPCs than at lower concentrations (1 µM), in both 2D and 3D models. Moreover, our study revealed that higher concentrations of CBD drastically reduced the size of neurospheres and the number of NPCs within neurospheres, impaired the morphology and mobility of neurons and astrocytes after differentiation, and reduced neurite sprouting. Interestingly, we also found that CBD alters cellular metabolism by influencing the expression of glycolytic and β-oxidative enzymes in the early and late stages of metabolic pathways. Therefore, our study demonstrated that higher concentrations of CBD promote important changes in cellular functions that are crucial during CNS development.
期刊介绍:
Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes.
Published papers have focused on:
NEURODEGENERATION and INJURY
Neuropathologies
Neuronal apoptosis
Neuronal necrosis
Neural death processes (anatomical, histochemical, neurochemical)
Neurodegenerative Disorders
Neural Effects of Substances of Abuse
NERVE REGENERATION and RESPONSES TO INJURY
Neural Adaptations
Neurotrophin mechanisms and actions
NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION
Excitatory amino acids
Neurotoxins, endogenous and synthetic
Reactive oxygen (nitrogen) species
Neuroprotection by endogenous and exogenous agents
Papers on related themes are welcome.