On the Identifiability of 3- and 4-Parameter Item Response Theory Models From the Perspective of Knowledge Space Theory.

IF 2.9 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Psychometrika Pub Date : 2024-06-01 Epub Date: 2024-02-13 DOI:10.1007/s11336-024-09950-z
Stefano Noventa, Sangbeak Ye, Augustin Kelava, Andrea Spoto
{"title":"On the Identifiability of 3- and 4-Parameter Item Response Theory Models From the Perspective of Knowledge Space Theory.","authors":"Stefano Noventa, Sangbeak Ye, Augustin Kelava, Andrea Spoto","doi":"10.1007/s11336-024-09950-z","DOIUrl":null,"url":null,"abstract":"<p><p>The present work aims at showing that the identification problems (here meant as both issues of empirical indistinguishability and unidentifiability) of some item response theory models are related to the notion of identifiability in knowledge space theory. Specifically, that the identification problems of the 3- and 4-parameter models are related to the more general issues of forward- and backward-gradedness in all items of the power set, which is the knowledge structure associated with IRT models under the assumption of local independence. As a consequence, the identifiability problem of a 4-parameter model is split into two parts: a first one, which is the result of a trade-off between the left-side added parameters and the remainder of the Item Response Function, e.g., a 2-parameter model, and a second one, which is the already well-known identifiability issue of the 2-parameter model itself. Application of the results to the logistic case appears to provide both a confirmation and a generalization of the current findings in the literature for both fixed- and random-effects IRT logistic models.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"486-516"},"PeriodicalIF":2.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164782/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-024-09950-z","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The present work aims at showing that the identification problems (here meant as both issues of empirical indistinguishability and unidentifiability) of some item response theory models are related to the notion of identifiability in knowledge space theory. Specifically, that the identification problems of the 3- and 4-parameter models are related to the more general issues of forward- and backward-gradedness in all items of the power set, which is the knowledge structure associated with IRT models under the assumption of local independence. As a consequence, the identifiability problem of a 4-parameter model is split into two parts: a first one, which is the result of a trade-off between the left-side added parameters and the remainder of the Item Response Function, e.g., a 2-parameter model, and a second one, which is the already well-known identifiability issue of the 2-parameter model itself. Application of the results to the logistic case appears to provide both a confirmation and a generalization of the current findings in the literature for both fixed- and random-effects IRT logistic models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从知识空间理论的角度看三参数和四参数项目反应理论模型的可识别性。
本研究旨在说明某些项目反应理论模型的可识别性问题(这里指经验上的不可区分性和不可识别性)与知识空间理论中的可识别性概念有关。具体来说,3参数和4参数模型的可识别性问题与更普遍的幂集所有项目的前向和后向分级问题有关,而幂集是在局部独立假设下与IRT模型相关的知识结构。因此,4 参数模型的可识别性问题被分为两部分:第一部分是左侧添加参数与项目反应函数(如 2 参数模型)其余部分之间权衡的结果;第二部分是 2 参数模型本身的可识别性问题。将这些结果应用于逻辑模型似乎既证实了目前文献中对固定效应和随机效应 IRT 逻辑模型的研究结果,又推广了这些研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
期刊最新文献
Correction to: Generalized Structured Component Analysis Accommodating Convex Components: A Knowledge-Based Multivariate Method with Interpretable Composite Indexes. Remarks from the Editor-in-Chief. Optimizing Large-Scale Educational Assessment with a "Divide-and-Conquer" Strategy: Fast and Efficient Distributed Bayesian Inference in IRT Models. Ordinal Outcome State-Space Models for Intensive Longitudinal Data. New Paradigm of Identifiable General-response Cognitive Diagnostic Models: Beyond Categorical Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1