Uncertainty quantification of receptor ligand binding sites prediction.

ArXiv Pub Date : 2024-11-15
Nanjie Chen, Dongliang Yu, Dmitri Beglov, Mark Kon, Julio Enrique Castrillon-Candas
{"title":"Uncertainty quantification of receptor ligand binding sites prediction.","authors":"Nanjie Chen, Dongliang Yu, Dmitri Beglov, Mark Kon, Julio Enrique Castrillon-Candas","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in protein docking site prediction have highlighted the limitations of traditional rigid docking algorithms, like PIPER, which often neglect critical stochastic elements such as solvent-induced fluctuations. These oversights can lead to inaccuracies in identifying viable docking sites due to the complexity of high-dimensional, stochastic energy manifolds with low regularity. To address this issue, our research introduces a novel model where the molecular shapes of ligands and receptors are represented using multi-variate Karhunen-Lo `eve (KL) expansions. This method effectively captures the stochastic nature of energy manifolds, allowing for a more accurate representation of molecular interactions.Developed as a plugin for PIPER, our scientific computing software enhances the platform, delivering robust uncertainty measures for the energy manifolds of ranked binding sites. Our results demonstrate that top-ranked binding sites, characterized by lower uncertainty in the stochastic energy manifold, align closely with actual docking sites. Conversely, sites with higher uncertainty correlate with less optimal docking positions. This distinction not only validates our approach but also sets a new standard in protein docking predictions, offering substantial implications for future molecular interaction research and drug development.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854274/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in protein docking site prediction have highlighted the limitations of traditional rigid docking algorithms, like PIPER, which often neglect critical stochastic elements such as solvent-induced fluctuations. These oversights can lead to inaccuracies in identifying viable docking sites due to the complexity of high-dimensional, stochastic energy manifolds with low regularity. To address this issue, our research introduces a novel model where the molecular shapes of ligands and receptors are represented using multi-variate Karhunen-Lo `eve (KL) expansions. This method effectively captures the stochastic nature of energy manifolds, allowing for a more accurate representation of molecular interactions.Developed as a plugin for PIPER, our scientific computing software enhances the platform, delivering robust uncertainty measures for the energy manifolds of ranked binding sites. Our results demonstrate that top-ranked binding sites, characterized by lower uncertainty in the stochastic energy manifold, align closely with actual docking sites. Conversely, sites with higher uncertainty correlate with less optimal docking positions. This distinction not only validates our approach but also sets a new standard in protein docking predictions, offering substantial implications for future molecular interaction research and drug development.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受体配体结合位点预测的不确定性量化。
蛋白质对接位点预测领域的最新进展凸显了传统刚性对接算法(如 PIPER)的局限性,这些算法往往忽略了关键的随机因素,如溶剂引起的波动。由于高维随机能量流形的复杂性和低规则性,这些疏忽会导致在确定可行的对接位点时出现误差。为了解决这个问题,我们的研究引入了一个新模型,在这个模型中,配体和受体的分子形状使用多变量卡尔胡宁-洛厄夫(KL)展开来表示。作为 PIPER 的插件,我们开发的科学计算软件增强了该平台,为排名靠前的结合位点的能量流形提供了稳健的不确定性测量。我们的研究结果表明,排名靠前的结合位点随机能量流形的不确定性较低,与实际对接位点非常接近。相反,不确定性较高的结合位点与较差的最佳对接位置相关。这种区别不仅验证了我们的方法,还为蛋白质对接预测设定了新标准,对未来的分子相互作用研究和药物开发具有重大意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metastability in networks of nonlinear stochastic integrate-and-fire neurons. On the linear scaling of entropy vs. energy in human brain activity, the Hagedorn temperature and the Zipf law. Timing consistency of T cell receptor activation in a stochastic model combining kinetic segregation and proofreading. Brain Morphology Normative modelling platform for abnormality and Centile estimation: Brain MoNoCle. Adversarial Attacks on Large Language Models in Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1