Nerea Encina-Baranda, Robert J Paneque-Yunta, Javier Lopez-Rodriguez, Edwin C Pratt, Trong Nghia Nguyen, Jan Grimm, Alejandro Lopez-Montes, Joaquin L Herraiz
Positron range (PR) limits spatial resolution and quantitative accuracy in PET imaging, particularly for high-energy positron-emitting radionuclides like 68Ga. We propose a deep learning method using 3D residual encoder-decoder convolutional neural networks (3D RED-CNNs), incorporating tissue-dependent anatomical information through a u-map-dependent loss function. Models were trained with realistic simulations and, using initial PET and CT data, generated positron range corrected images. We validated the models in simulations and real acquisitions. Three 3D RED-CNN architectures, Single-channel, Two-channel, and DualEncoder, were trained on simulated PET datasets and evaluated on synthetic and real PET acquisitions from 68Ga-FH and 68Ga-PSMA-617 mouse studies. Performance was compared to a standard Richardson-Lucy-based positron range correction (RL-PRC) method using metrics such as mean absolute error (MAE), structural similarity index (SSIM), contrast recovery (CR), and contrast-to-noise ratio (CNR). CNN-based methods achieved up to 19 percent SSIM improvement and 13 percent MAE reduction compared to RL-PRC. The Two-Channel model achieved the highest CR and CNR, recovering lung activity with 97 percent agreement to ground truth versus 77 percent for RL-PRC. Noise levels remained stable for CNN models (approximately 5.9 percent), while RL-PRC increased noise by 5.8 percent. In preclinical acquisitions, the Two-Channel model achieved the highest CNR across tissues while maintaining the lowest noise level (9.6 percent). Although no ground truth was available for real data, tumor delineation and spillover artifacts improved with the Two-Channel model. These findings highlight the potential of CNN-based PRC to enhance quantitative PET imaging, particularly for 68Ga. Future work will improve model generalization through domain adaptation and hybrid training strategies.
正电子距离(PR)限制了PET成像的空间分辨率和定量精度,特别是对于像68Ga这样的高能正电子发射放射性核素。我们提出了一种使用3D残差编码器-解码器卷积神经网络(3D red - cnn)的深度学习方法,通过u-map依赖的损失函数结合组织相关的解剖信息。模型经过真实模拟训练,并使用初始PET和CT数据生成正电子距离校正图像。我们在模拟和实际采集中验证了这些模型。我们在模拟PET数据集上训练了三种3D RED-CNN架构(单通道、双通道和双通道),并对68Ga-FH和68Ga-PSMA-617小鼠的合成和真实PET采集结果进行了评估。使用平均绝对误差(MAE)、结构相似指数(SSIM)、对比度恢复(CR)和对比噪声比(CNR)等指标,将性能与标准richardson - lucon -based正电子范围校正(RL-PRC)方法进行比较。与RL-PRC相比,基于cnn的方法实现了高达19%的SSIM改进和13%的MAE降低。双通道模型获得了最高的CR和CNR,恢复肺活动的一致性为97%,而RL-PRC为77%。CNN模型的噪声水平保持稳定(约5.9%),而RL-PRC模型的噪声水平增加了5.8%。在临床前采集中,双通道模型在保持最低噪声水平(9.6%)的同时,实现了跨组织的最高CNR。尽管没有真实数据的基础真相,但双通道模型改善了肿瘤描绘和溢出伪影。这些发现强调了基于cnn的PRC增强定量PET成像的潜力,特别是对68Ga。未来的工作将通过领域自适应和混合训练策略来改进模型泛化。
{"title":"A tissue-informed deep learning-based method for positron range correction in preclinical 68Ga PET imaging.","authors":"Nerea Encina-Baranda, Robert J Paneque-Yunta, Javier Lopez-Rodriguez, Edwin C Pratt, Trong Nghia Nguyen, Jan Grimm, Alejandro Lopez-Montes, Joaquin L Herraiz","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Positron range (PR) limits spatial resolution and quantitative accuracy in PET imaging, particularly for high-energy positron-emitting radionuclides like 68Ga. We propose a deep learning method using 3D residual encoder-decoder convolutional neural networks (3D RED-CNNs), incorporating tissue-dependent anatomical information through a u-map-dependent loss function. Models were trained with realistic simulations and, using initial PET and CT data, generated positron range corrected images. We validated the models in simulations and real acquisitions. Three 3D RED-CNN architectures, Single-channel, Two-channel, and DualEncoder, were trained on simulated PET datasets and evaluated on synthetic and real PET acquisitions from 68Ga-FH and 68Ga-PSMA-617 mouse studies. Performance was compared to a standard Richardson-Lucy-based positron range correction (RL-PRC) method using metrics such as mean absolute error (MAE), structural similarity index (SSIM), contrast recovery (CR), and contrast-to-noise ratio (CNR). CNN-based methods achieved up to 19 percent SSIM improvement and 13 percent MAE reduction compared to RL-PRC. The Two-Channel model achieved the highest CR and CNR, recovering lung activity with 97 percent agreement to ground truth versus 77 percent for RL-PRC. Noise levels remained stable for CNN models (approximately 5.9 percent), while RL-PRC increased noise by 5.8 percent. In preclinical acquisitions, the Two-Channel model achieved the highest CNR across tissues while maintaining the lowest noise level (9.6 percent). Although no ground truth was available for real data, tumor delineation and spillover artifacts improved with the Two-Channel model. These findings highlight the potential of CNN-based PRC to enhance quantitative PET imaging, particularly for 68Ga. Future work will improve model generalization through domain adaptation and hybrid training strategies.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12889857/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146168343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingyuan Chen, Yunze Yang, Olivia M Muller, Lei Zeng, Zhengliang Liu, Tianming Liu, Robert L, Foote, Daniel J, Ma, Samir H, Patel, Zhong Liu, Wei Liu
Distinguishing causal relationships from statistical correlations remains a fundamental challenge in clinical research, limiting the translation of observational findings into interventional treatment guidelines. Here we apply causal machine learning to establish causal effects of radiation dose parameters on mandibular osteoradionecrosis (ORN) in 931 head and neck cancer patients treated with volumetric-modulated arc therapy. Using generalized random forests, we demonstrate that all examined dosimetric factors exhibit significant positive causal effects on ORN development (average treatment effects: 0.092-0.141). Integration with explainable machine learning reveals substantial treatment effect heterogeneity, with patients aged 50-60 years showing the strongest causal dose-response relationships (conditional average treatment effects up to 0.229), while patients over 70 years demonstrate minimal effects. These results suggest that age-stratified treatment optimization and personalized treatment planning for the dosimetric factors could reduce ORN risk. Our findings demonstrate that causal inference methods can transform clinical retrospective radiotherapy data into personalized treatment recommendations, providing a methodological framework applicable to toxicity prediction across oncology and other clinical domains where treatment decisions depend on complex dose-response relationships.
{"title":"Age-Dependent Causal Effects of Mandibular Dose on Osteoradionecrosis Risk After Head and Neck Radiotherapy.","authors":"Jingyuan Chen, Yunze Yang, Olivia M Muller, Lei Zeng, Zhengliang Liu, Tianming Liu, Robert L, Foote, Daniel J, Ma, Samir H, Patel, Zhong Liu, Wei Liu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Distinguishing causal relationships from statistical correlations remains a fundamental challenge in clinical research, limiting the translation of observational findings into interventional treatment guidelines. Here we apply causal machine learning to establish causal effects of radiation dose parameters on mandibular osteoradionecrosis (ORN) in 931 head and neck cancer patients treated with volumetric-modulated arc therapy. Using generalized random forests, we demonstrate that all examined dosimetric factors exhibit significant positive causal effects on ORN development (average treatment effects: 0.092-0.141). Integration with explainable machine learning reveals substantial treatment effect heterogeneity, with patients aged 50-60 years showing the strongest causal dose-response relationships (conditional average treatment effects up to 0.229), while patients over 70 years demonstrate minimal effects. These results suggest that age-stratified treatment optimization and personalized treatment planning for the dosimetric factors could reduce ORN risk. Our findings demonstrate that causal inference methods can transform clinical retrospective radiotherapy data into personalized treatment recommendations, providing a methodological framework applicable to toxicity prediction across oncology and other clinical domains where treatment decisions depend on complex dose-response relationships.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12889853/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146168281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A major goal of neuroscience is to understand brain computations during visual processing in naturalistic settings. A dominant approach is to use image-computable deep neural networks trained with different task objectives as a basis for linear encoding models. However, in addition to requiring estimation of a large number of linear encoding parameters, this approach ignores the structure of the feature maps both in the brain and the models. Recently proposed alternatives factor the linear mapping into separate sets of spatial and feature weights, thus finding static receptive fields for units, which is appropriate only for early visual areas. In this work, we employ the attention mechanism used in the transformer architecture to study how retinotopic visual features can be dynamically routed to category-selective areas in high-level visual processing. We show that this computational motif is significantly more powerful than alternative methods in predicting brain activity during natural scene viewing, across different feature basis models and modalities. We also show that this approach is inherently more interpretable as the attention-routing signals for different high-level categorical areas can be easily visualized for any input image. Given its high performance at predicting brain responses to novel images, the model deserves consideration as a candidate mechanistic model of how visual information from retinotopic maps is routed in the human brain based on the relevance of the input content to different category-selective regions.
{"title":"Transformer brain encoders explain human high-level visual responses.","authors":"Hossein Adeli, Sun Minni, Nikolaus Kriegeskorte","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>A major goal of neuroscience is to understand brain computations during visual processing in naturalistic settings. A dominant approach is to use image-computable deep neural networks trained with different task objectives as a basis for linear encoding models. However, in addition to requiring estimation of a large number of linear encoding parameters, this approach ignores the structure of the feature maps both in the brain and the models. Recently proposed alternatives factor the linear mapping into separate sets of spatial and feature weights, thus finding static receptive fields for units, which is appropriate only for early visual areas. In this work, we employ the attention mechanism used in the transformer architecture to study how retinotopic visual features can be dynamically routed to category-selective areas in high-level visual processing. We show that this computational motif is significantly more powerful than alternative methods in predicting brain activity during natural scene viewing, across different feature basis models and modalities. We also show that this approach is inherently more interpretable as the attention-routing signals for different high-level categorical areas can be easily visualized for any input image. Given its high performance at predicting brain responses to novel images, the model deserves consideration as a candidate mechanistic model of how visual information from retinotopic maps is routed in the human brain based on the relevance of the input content to different category-selective regions.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12889847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146168360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Boshuo Wang, Torge H Worbs, Minhaj A Hussain, Aman S Aberra, Axel Thielscher, Warren M Grill, Angel V Peterchev
Accurate simulations of electric fields (E-fields) in neural stimulation depend on tissue conductivity representations that link underlying microscopic tissue structure with macroscopic assumptions. Mesoscale conductivity variations can produce meaningful changes in E-fields and neural activation thresholds but remain largely absent from standard macroscopic models. Conductivity variations within the cortex are expected given the differences in cell density and volume fraction across layers. We review recent efforts modeling microscopic and mesoscopic E-fields and outline approaches that bridge micro- and macroscales to derive consistent mesoscale conductivity distributions. Using simplified microscopic models, effective tissue conductivity was estimated as a function of volume fraction of extracellular space, and the conductivities of different cortical layers were interpolated based on experimental volume fraction. The effective tissue conductivities were monotonically decreasing convex functions of the cell volume fraction. With decreasing cell volume fraction, the conductivity of cortical layers increased with depth from layer 2 to 6. Although the variation of conductivity within the cortex was small when compared to the conductivity of extracellular fluid (9% to 15%), the conductivity difference was considerably larger when compared between layers, e.g., with layer 3 and 6 being 20% and 50% more conductive than layer 2, respectively. The review and analysis provide a foundation for accurate multiscale models of E-fields and neural stimulation. Using layer-specific conductivity values within the cortex could improve the accuracy of estimations of thresholds and distributions of neural activation in E-field models of brain stimulation.
{"title":"Mesoscale tissue properties and electric fields in brain stimulation: Bridging the macroscopic and microscopic scales using layer-specific cortical conductivity.","authors":"Boshuo Wang, Torge H Worbs, Minhaj A Hussain, Aman S Aberra, Axel Thielscher, Warren M Grill, Angel V Peterchev","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Accurate simulations of electric fields (E-fields) in neural stimulation depend on tissue conductivity representations that link underlying microscopic tissue structure with macroscopic assumptions. Mesoscale conductivity variations can produce meaningful changes in E-fields and neural activation thresholds but remain largely absent from standard macroscopic models. Conductivity variations within the cortex are expected given the differences in cell density and volume fraction across layers. We review recent efforts modeling microscopic and mesoscopic E-fields and outline approaches that bridge micro- and macroscales to derive consistent mesoscale conductivity distributions. Using simplified microscopic models, effective tissue conductivity was estimated as a function of volume fraction of extracellular space, and the conductivities of different cortical layers were interpolated based on experimental volume fraction. The effective tissue conductivities were monotonically decreasing convex functions of the cell volume fraction. With decreasing cell volume fraction, the conductivity of cortical layers increased with depth from layer 2 to 6. Although the variation of conductivity within the cortex was small when compared to the conductivity of extracellular fluid (9% to 15%), the conductivity difference was considerably larger when compared between layers, e.g., with layer 3 and 6 being 20% and 50% more conductive than layer 2, respectively. The review and analysis provide a foundation for accurate multiscale models of E-fields and neural stimulation. Using layer-specific conductivity values within the cortex could improve the accuracy of estimations of thresholds and distributions of neural activation in E-field models of brain stimulation.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12668029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145662752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel D Richman, Jessica Karaguesian, Carl-Mikael Suomivuori, Ron O Dror
The function of biomolecules such as proteins depends on their ability to interconvert between a wide range of structures or "conformations." Researchers have endeavored for decades to develop computational methods to predict the distribution of conformations, which is far harder to determine experimentally than a static folded structure. We present ConforMix, an inference-time algorithm that enhances sampling of conformational distributions using a combination of classifier guidance, filtering, and free energy estimation. Our approach upgrades diffusion models -- whether trained for static structure prediction or conformational generation -- to enable more efficient discovery of conformational variability without requiring prior knowledge of major degrees of freedom. ConforMix is orthogonal to improvements in model pretraining and would benefit even a hypothetical model that perfectly reproduced the Boltzmann distribution. Remarkably, when applied to a diffusion model trained for static structure prediction, ConforMix captures structural changes including domain motion, cryptic pocket flexibility, and transporter cycling, while avoiding unphysical states. Case studies of biologically critical proteins demonstrate the scalability, accuracy, and utility of this method.
{"title":"Unlocking hidden biomolecular conformational landscapes in diffusion models at inference time.","authors":"Daniel D Richman, Jessica Karaguesian, Carl-Mikael Suomivuori, Ron O Dror","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The function of biomolecules such as proteins depends on their ability to interconvert between a wide range of structures or \"conformations.\" Researchers have endeavored for decades to develop computational methods to predict the distribution of conformations, which is far harder to determine experimentally than a static folded structure. We present ConforMix, an inference-time algorithm that enhances sampling of conformational distributions using a combination of classifier guidance, filtering, and free energy estimation. Our approach upgrades diffusion models -- whether trained for static structure prediction or conformational generation -- to enable more efficient discovery of conformational variability without requiring prior knowledge of major degrees of freedom. ConforMix is orthogonal to improvements in model pretraining and would benefit even a hypothetical model that perfectly reproduced the Boltzmann distribution. Remarkably, when applied to a diffusion model trained for static structure prediction, ConforMix captures structural changes including domain motion, cryptic pocket flexibility, and transporter cycling, while avoiding unphysical states. Case studies of biologically critical proteins demonstrate the scalability, accuracy, and utility of this method.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12687860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145727703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noga Mudrik, Yuxi Chen, Gal Mishne, Adam S Charles
Many fields collect large-scale temporal data through repeated measurements (trials), where each trial is labeled with a set of metadata variables spanning several categories. For example, a trial in a neuroscience study may be linked to a value from category (a): task difficulty, and category (b): animal choice. A critical challenge in time-series analysis is to understand how these labels are encoded within the multi-trial observations, and disentangle the distinct effect of each label entry across categories. Here, we present MILCCI, a novel data-driven method that i) identifies the interpretable components underlying the data, ii) captures cross-trial variability, and iii) integrates label information to understand each category's representation within the data. MILCCI extends a sparse per-trial decomposition that leverages label similarities within each category to enable subtle, label-driven cross-trial adjustments in component compositions and to distinguish the contribution of each category. MILCCI also learns each component's corresponding temporal trace, which evolves over time within each trial and varies flexibly across trials. We demonstrate MILCCI's performance through both synthetic and real-world examples, including voting patterns, online page view trends, and neuronal recordings.
{"title":"Multi-Integration of Labels across Categories for Component Identification (MILCCI).","authors":"Noga Mudrik, Yuxi Chen, Gal Mishne, Adam S Charles","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Many fields collect large-scale temporal data through repeated measurements (trials), where each trial is labeled with a set of metadata variables spanning several categories. For example, a trial in a neuroscience study may be linked to a value from category (a): task difficulty, and category (b): animal choice. A critical challenge in time-series analysis is to understand how these labels are encoded within the multi-trial observations, and disentangle the distinct effect of each label entry across categories. Here, we present MILCCI, a novel data-driven method that i) identifies the interpretable components underlying the data, ii) captures cross-trial variability, and iii) integrates label information to understand each category's representation within the data. MILCCI extends a sparse per-trial decomposition that leverages label similarities within each category to enable subtle, label-driven cross-trial adjustments in component compositions and to distinguish the contribution of each category. MILCCI also learns each component's corresponding temporal trace, which evolves over time within each trial and varies flexibly across trials. We demonstrate MILCCI's performance through both synthetic and real-world examples, including voting patterns, online page view trends, and neuronal recordings.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12889858/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146168284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guantong Qi, Jiasheng Wang, Mei Ling Chong, Zahid Shaik, Shenglan Li, Shinya Yamamoto, Undiagnosed Diseases Network, Pengfei Liu, Hu Chen, Zhandong Liu
Millions of children worldwide are affected by severe rare Mendelian disorders, yet exome and genome sequencing still fail to provide a definitive molecular diagnosis for a large fraction of patients, prolonging the diagnostic odyssey. Bridging this gap increasingly requires transitioning from DNA-only interpretation to multi-modal diagnostic reasoning that combines genomic data, transcriptomic sequencing (RNA-seq), and phenotype information; however, computational frameworks that coherently integrate these signals remain limited. Here we present RareCollab, an agentic diagnostic framework that pairs a stable quantitative Diagnostic Engine with Large Language Model (LLM)-based specialist modules that produce high-resolution, interpretable assessments from transcriptomic signals, phenotypes, variant databases, and the literature to prioritize potential diagnostic variants. In a rigorously curated benchmark of Undiagnosed Diseases Network (UDN) patients with paired genomic and transcriptomic data, RareCollab achieved 77% top-5 diagnostic accuracy and improved top-1 to top-5 accuracy by ~20% over widely used variant-prioritization approaches. RareCollab illustrates how modular artificial intelligence (AI) can operationalize multi-modal evidence for accurate, scalable rare disease diagnosis, offering a promising path toward reducing the diagnostic odyssey for affected families.
{"title":"RareCollab -- An Agentic System Diagnosing Mendelian Disorders with Integrated Phenotypic and Molecular Evidence.","authors":"Guantong Qi, Jiasheng Wang, Mei Ling Chong, Zahid Shaik, Shenglan Li, Shinya Yamamoto, Undiagnosed Diseases Network, Pengfei Liu, Hu Chen, Zhandong Liu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Millions of children worldwide are affected by severe rare Mendelian disorders, yet exome and genome sequencing still fail to provide a definitive molecular diagnosis for a large fraction of patients, prolonging the diagnostic odyssey. Bridging this gap increasingly requires transitioning from DNA-only interpretation to multi-modal diagnostic reasoning that combines genomic data, transcriptomic sequencing (RNA-seq), and phenotype information; however, computational frameworks that coherently integrate these signals remain limited. Here we present RareCollab, an agentic diagnostic framework that pairs a stable quantitative Diagnostic Engine with Large Language Model (LLM)-based specialist modules that produce high-resolution, interpretable assessments from transcriptomic signals, phenotypes, variant databases, and the literature to prioritize potential diagnostic variants. In a rigorously curated benchmark of Undiagnosed Diseases Network (UDN) patients with paired genomic and transcriptomic data, RareCollab achieved 77% top-5 diagnostic accuracy and improved top-1 to top-5 accuracy by ~20% over widely used variant-prioritization approaches. RareCollab illustrates how modular artificial intelligence (AI) can operationalize multi-modal evidence for accurate, scalable rare disease diagnosis, offering a promising path toward reducing the diagnostic odyssey for affected families.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12889852/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146168295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Many modern ultrasound beamformers report improved image quality when evaluated using classical criteria like the contrast ratio and contrast-to-noise ratio, which are based on summary statistics of regions of interest (ROIs). However, nonlinear beamformers and post-processing methods can substantially alter these statistics, raising concerns that the reported improvements may reflect changes in dynamic range or remapping rather than a reflection of true information gain, such as clutter suppression. New criteria like the generalized contrast-to-noise ratio (gCNR) address these concerns, but rely on noisy estimates of the underlying distribution. To address this, we introduce a new image quality criterion, called the contrast order (CO), defined as the expected value of the sign of the difference in brightness between two ROIs. The CO is invariant under all strictly monotonic transformations of the image values, as it depends only on their relative ordering, and is interpretable as the probability that one ROI is brighter than the other minus the probability that it is darker. Unlike the gCNR, the CO has a simple unbiased estimator whose variance decreases with the number of samples in each ROI. We further propose the effective contrast ratio (ECR), which calibrates the contrast order to the familiar contrast ratio such that the two coincide under ideal Rayleigh-speckle statistics. Together, the CO and ECR provide order- and sign-preserving, dynamic-range-invariant criteria for evaluating lesion contrast, offering a principled alternative to classical and newer image quality criteria when assessing modern beamformers.
{"title":"The Contrast Order: An Order-Based Image Quality Criterion for Nonlinear Beamformers.","authors":"Dongwoon Hyun","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Many modern ultrasound beamformers report improved image quality when evaluated using classical criteria like the contrast ratio and contrast-to-noise ratio, which are based on summary statistics of regions of interest (ROIs). However, nonlinear beamformers and post-processing methods can substantially alter these statistics, raising concerns that the reported improvements may reflect changes in dynamic range or remapping rather than a reflection of true information gain, such as clutter suppression. New criteria like the generalized contrast-to-noise ratio (gCNR) address these concerns, but rely on noisy estimates of the underlying distribution. To address this, we introduce a new image quality criterion, called the contrast order (CO), defined as the expected value of the sign of the difference in brightness between two ROIs. The CO is invariant under all strictly monotonic transformations of the image values, as it depends only on their relative ordering, and is interpretable as the probability that one ROI is brighter than the other minus the probability that it is darker. Unlike the gCNR, the CO has a simple unbiased estimator whose variance decreases with the number of samples in each ROI. We further propose the effective contrast ratio (ECR), which calibrates the contrast order to the familiar contrast ratio such that the two coincide under ideal Rayleigh-speckle statistics. Together, the CO and ECR provide order- and sign-preserving, dynamic-range-invariant criteria for evaluating lesion contrast, offering a principled alternative to classical and newer image quality criteria when assessing modern beamformers.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12889846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146168306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jagan Mohan Reddy Dwarampudi, Jennifer L Purks, Joshua Wong, Renjie Hu, Tania Banerjee
We introduce a reproducible, bias-resistant machine learning framework that integrates domain-informed feature engineering, nested cross-validation, and calibrated decision-threshold optimization for small-sample neuroimaging data. Conventional cross-validation frameworks that reuse the same folds for both model selection and performance estimation yield optimistically biased results, limiting reproducibility and generalization. Demonstrated on a high-dimensional structural MRI dataset of deep brain stimulation cognitive outcomes, the framework achieved a nested-CV balanced accuracy of 0.660,$pm$,0.068 using a compact, interpretable subset selected via importance-guided ranking. By combining interpretability and unbiased evaluation, this work provides a generalizable computational blueprint for reliable machine learning in data-limited biomedical domains.
{"title":"A Reproducible Framework for Bias-Resistant Machine Learning on Small-Sample Neuroimaging Data.","authors":"Jagan Mohan Reddy Dwarampudi, Jennifer L Purks, Joshua Wong, Renjie Hu, Tania Banerjee","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We introduce a reproducible, bias-resistant machine learning framework that integrates domain-informed feature engineering, nested cross-validation, and calibrated decision-threshold optimization for small-sample neuroimaging data. Conventional cross-validation frameworks that reuse the same folds for both model selection and performance estimation yield optimistically biased results, limiting reproducibility and generalization. Demonstrated on a high-dimensional structural MRI dataset of deep brain stimulation cognitive outcomes, the framework achieved a nested-CV balanced accuracy of 0.660,$pm$,0.068 using a compact, interpretable subset selected via importance-guided ranking. By combining interpretability and unbiased evaluation, this work provides a generalizable computational blueprint for reliable machine learning in data-limited biomedical domains.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12889860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146168357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T Anderson Keller, Lyle Muller, Terrence J Sejnowski, Max Welling
Spatiotemporal flows of neural activity, such as traveling waves, have been observed throughout the brain since the earliest recordings; yet there is still little consensus on their functional role. Recent experiments and models have linked traveling waves to visual and physical motion, but these observations have been difficult to reconcile with standard accounts of topographically organized selectivity and feedforward receptive fields. Here, we introduce a theoretical framework that formalizes and generalizes the connection between 'motion' and flowing neural dynamics in the language of equivariant neural network theory. We consider 'motion' not only in physical or visual spaces, but also in more abstract representational spaces, and we argue that recurrent traveling-wave-like dynamics are not just useful but necessary for accurate and stable processing of any signal undergoing such motion. Formally, we show that for any non-trivial recurrent neural network to process a sequence undergoing a flow transformation (such as visual motion) in a structured equivariant manner, its hidden state dynamics must actively realize a homomorphic representation of the same flow through recurrent connectivity. In this ''spatiotemporal perspective on dynamical computation'', traveling waves and related flows are best understood as faithful dynamic representations of stimulus flows; and consequently the natural inclination of biological systems towards such dynamics may be viewed as an innate inductive bias towards efficiency and generalization in the spatiotemporally-structured dynamical world they inhabit.
{"title":"A Spatiotemporal Perspective on Dynamical Computation in Neural Information Processing Systems.","authors":"T Anderson Keller, Lyle Muller, Terrence J Sejnowski, Max Welling","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Spatiotemporal flows of neural activity, such as traveling waves, have been observed throughout the brain since the earliest recordings; yet there is still little consensus on their functional role. Recent experiments and models have linked traveling waves to visual and physical motion, but these observations have been difficult to reconcile with standard accounts of topographically organized selectivity and feedforward receptive fields. Here, we introduce a theoretical framework that formalizes and generalizes the connection between 'motion' and flowing neural dynamics in the language of equivariant neural network theory. We consider 'motion' not only in physical or visual spaces, but also in more abstract representational spaces, and we argue that recurrent traveling-wave-like dynamics are not just useful but necessary for accurate and stable processing of any signal undergoing such motion. Formally, we show that for any non-trivial recurrent neural network to process a sequence undergoing a flow transformation (such as visual motion) in a structured equivariant manner, its hidden state dynamics must actively realize a homomorphic representation of the same flow through recurrent connectivity. In this ''spatiotemporal perspective on dynamical computation'', traveling waves and related flows are best understood as faithful dynamic representations of stimulus flows; and consequently the natural inclination of biological systems towards such dynamics may be viewed as an innate inductive bias towards efficiency and generalization in the spatiotemporally-structured dynamical world they inhabit.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12889856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146168274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}