E Middell, L Carlton, S Moradi, T Codina, T Fischer, J Cutler, S Kelley, J Behrendt, T Dissanayake, N Harmening, M A Yücel, D A Boas, A von Lühmann
Functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT) are rapidly evolving toward wearable, multimodal, and data-driven, AI-supported neuroimaging in the everyday world. However, current analytical tools are fragmented across platforms, limiting reproducibility, interoperability, and integration with modern machine learning (ML) workflows. Cedalion is a Python-based open-source framework designed to unify advanced model-based and data-driven analysis of multimodal fNIRS and DOT data within a reproducible, extensible, and community-driven environment. Cedalion integrates forward modelling, photogrammetric optode co-registration, signal processing, GLM Analysis, DOT image reconstruction, and ML-based data-driven methods within a single standardized architecture based on the Python ecosystem. It adheres to SNIRF and BIDS standards, supports cloud-executable Jupyter notebooks, and provides containerized workflows for scalable, fully reproducible analysis pipelines that can be provided alongside original research publications. Cedalion connects established optical-neuroimaging pipelines with ML frameworks such as scikit-learn and PyTorch, enabling seamless multimodal fusion with EEG, MEG, and physiological data. It implements validated algorithms for signal-quality assessment, motion correction, GLM modelling, and DOT reconstruction, complemented by modules for simulation, data augmentation, and multimodal physiology analysis. Automated documentation links each method to its source publication, and continuous-integration testing ensures robustness. This tutorial paper provides seven fully executable notebooks that demonstrate core features. Cedalion offers an open, transparent, and community extensible foundation that supports reproducible, scalable, cloud- and ML-ready fNIRS/DOT workflows for laboratory-based and real-world neuroimaging.
{"title":"Cedalion Tutorial: A Python-based framework for comprehensive analysis of multimodal fNIRS & DOT from the lab to the everyday world.","authors":"E Middell, L Carlton, S Moradi, T Codina, T Fischer, J Cutler, S Kelley, J Behrendt, T Dissanayake, N Harmening, M A Yücel, D A Boas, A von Lühmann","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT) are rapidly evolving toward wearable, multimodal, and data-driven, AI-supported neuroimaging in the everyday world. However, current analytical tools are fragmented across platforms, limiting reproducibility, interoperability, and integration with modern machine learning (ML) workflows. Cedalion is a Python-based open-source framework designed to unify advanced model-based and data-driven analysis of multimodal fNIRS and DOT data within a reproducible, extensible, and community-driven environment. Cedalion integrates forward modelling, photogrammetric optode co-registration, signal processing, GLM Analysis, DOT image reconstruction, and ML-based data-driven methods within a single standardized architecture based on the Python ecosystem. It adheres to SNIRF and BIDS standards, supports cloud-executable Jupyter notebooks, and provides containerized workflows for scalable, fully reproducible analysis pipelines that can be provided alongside original research publications. Cedalion connects established optical-neuroimaging pipelines with ML frameworks such as scikit-learn and PyTorch, enabling seamless multimodal fusion with EEG, MEG, and physiological data. It implements validated algorithms for signal-quality assessment, motion correction, GLM modelling, and DOT reconstruction, complemented by modules for simulation, data augmentation, and multimodal physiology analysis. Automated documentation links each method to its source publication, and continuous-integration testing ensures robustness. This tutorial paper provides seven fully executable notebooks that demonstrate core features. Cedalion offers an open, transparent, and community extensible foundation that supports reproducible, scalable, cloud- and ML-ready fNIRS/DOT workflows for laboratory-based and real-world neuroimaging.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12803311/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145992215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A protein's function depends critically on its conformational ensemble, a collection of energy weighted structures whose balance depends on temperature and environment. Though recent deep learning (DL) methods have substantially advanced predictions of single protein structures, computationally modeling conformational ensembles remains a challenge. Here, we focus on modeling fold-switching proteins, which remodel their secondary and/or tertiary structures and change their functions in response to cellular stimuli. These underrepresented members of the protein universe serve as test cases for a method's generalizability. They reveal that DL models often predict conformational ensembles by association with training-set structures, limiting generalizability. These observations suggest use cases for when DL methods will likely succeed or fail. Developing computational methods that successfully identify new fold-switching proteins from large pools of candidates may advance modeling conformational ensembles more broadly.
{"title":"Fold-switching proteins push the boundaries of conformational ensemble prediction.","authors":"Myeongsang Lee, Lauren L Porter","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>A protein's function depends critically on its conformational ensemble, a collection of energy weighted structures whose balance depends on temperature and environment. Though recent deep learning (DL) methods have substantially advanced predictions of single protein structures, computationally modeling conformational ensembles remains a challenge. Here, we focus on modeling fold-switching proteins, which remodel their secondary and/or tertiary structures and change their functions in response to cellular stimuli. These underrepresented members of the protein universe serve as test cases for a method's generalizability. They reveal that DL models often predict conformational ensembles by association with training-set structures, limiting generalizability. These observations suggest use cases for when DL methods will likely succeed or fail. Developing computational methods that successfully identify new fold-switching proteins from large pools of candidates may advance modeling conformational ensembles more broadly.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12803323/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145992142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jalaj Maheshwari, Wensi Wu, Christopher N Zelonis, Steve A Maas, Kyle Sunderland, Yuval Barak-Corren, Stephen Ching, Patricia Sabin, Andras Lasso, Matthew J Gillespie, Jeffrey A Weiss, Matthew A Jolley
Finite element (FE) simulations emulating transcatheter pulmonary valve (TPV) system deployment in patient-specific right ventricular outflow tracts (RVOT) assume material properties for the RVOT and adjacent tissues. Sensitivity of the deployment to variation in RVOT material properties is unknown. Moreover, the effect of a transannular patch stiffness and location on simulated TPV deployment has not been explored. A sensitivity analysis on the material properties of a patient-specific RVOT during TPV deployment, modeled as an uncoupled HGO material, was conducted using FEBioUncertainSCI. Further, the effects of a transannular patch during TPV deployment were analyzed by considering two patch locations and four patch stiffnesses. Visualization of results and quantification were performed using custom metrics implemented in SlicerHeart and FEBio. Sensitivity analysis revealed that the shear modulus of the ground matrix (c), fiber modulus (k1), and fiber mean orientation angle (gamma) had the greatest effect on 95th %ile stress, whereas only c had the greatest effect on 95th %ile Lagrangian strain. First-order sensitivity indices contributed the greatest to the total-order sensitivity indices. Simulations using a transannular patch revealed that peak stress and strain were dependent on patch location. As stiffness of the patch increased, greater stress was observed at the interface connecting the patch to the RVOT, and stress in the patch itself increased while strain decreased. The total enclosed volume by the TPV device remained unchanged across all simulated patch cases. This study highlights that while uncertainties in tissue material properties and patch locations may influence functional outcomes, FE simulations provide a reliable framework for evaluating these outcomes in TPVR.
{"title":"Effect of Right Ventricular Outflow Tract Material Properties on Simulated Transcatheter Pulmonary Placement.","authors":"Jalaj Maheshwari, Wensi Wu, Christopher N Zelonis, Steve A Maas, Kyle Sunderland, Yuval Barak-Corren, Stephen Ching, Patricia Sabin, Andras Lasso, Matthew J Gillespie, Jeffrey A Weiss, Matthew A Jolley","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Finite element (FE) simulations emulating transcatheter pulmonary valve (TPV) system deployment in patient-specific right ventricular outflow tracts (RVOT) assume material properties for the RVOT and adjacent tissues. Sensitivity of the deployment to variation in RVOT material properties is unknown. Moreover, the effect of a transannular patch stiffness and location on simulated TPV deployment has not been explored. A sensitivity analysis on the material properties of a patient-specific RVOT during TPV deployment, modeled as an uncoupled HGO material, was conducted using FEBioUncertainSCI. Further, the effects of a transannular patch during TPV deployment were analyzed by considering two patch locations and four patch stiffnesses. Visualization of results and quantification were performed using custom metrics implemented in SlicerHeart and FEBio. Sensitivity analysis revealed that the shear modulus of the ground matrix (c), fiber modulus (k1), and fiber mean orientation angle (gamma) had the greatest effect on 95th %ile stress, whereas only c had the greatest effect on 95th %ile Lagrangian strain. First-order sensitivity indices contributed the greatest to the total-order sensitivity indices. Simulations using a transannular patch revealed that peak stress and strain were dependent on patch location. As stiffness of the patch increased, greater stress was observed at the interface connecting the patch to the RVOT, and stress in the patch itself increased while strain decreased. The total enclosed volume by the TPV device remained unchanged across all simulated patch cases. This study highlights that while uncertainties in tissue material properties and patch locations may influence functional outcomes, FE simulations provide a reliable framework for evaluating these outcomes in TPVR.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12803331/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145992190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Computer simulations of complex population genetic models are an essential tool for making sense of the large-scale datasets of multiple genome sequences from a single species that are becoming increasingly available. A widely used approach for reducing computing time is to simulate populations that are much smaller than the natural populations that they are intended to represent, by using parameters such as selection coefficients and mutation rates, whose products with the population size correspond to those of the natural populations. This approach has come to be known as rescaling, and is justified by the theory of the genetics of finite populations. Recently, however, there have been criticisms of this practice, which have brought to light situations in which it can lead to erroneous conclusions. This paper reviews the theoretical basis for rescaling, and relates it to current practice in population genetics simulations. It shows that some population genetic statistics are scaleable while others are not. Additionally, it shows that there are likely to be problems with rescaling when simulating large chromosomal regions, due to the non-linear relation between the physical distance between a pair of separate nucleotide sites and the frequency of recombination between them. Other difficulties with rescaling can arise in connection with simulations of selection on complex traits, and with populations that reproduce partly by self-fertilization or asexual reproduction. A number of recommendations are made for good practice in relation to rescaling.
{"title":"The rights and wrongs of rescaling in population genetics simulations.","authors":"Parul Johri, Fanny Pouyet, Brian Charlesworth","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Computer simulations of complex population genetic models are an essential tool for making sense of the large-scale datasets of multiple genome sequences from a single species that are becoming increasingly available. A widely used approach for reducing computing time is to simulate populations that are much smaller than the natural populations that they are intended to represent, by using parameters such as selection coefficients and mutation rates, whose products with the population size correspond to those of the natural populations. This approach has come to be known as rescaling, and is justified by the theory of the genetics of finite populations. Recently, however, there have been criticisms of this practice, which have brought to light situations in which it can lead to erroneous conclusions. This paper reviews the theoretical basis for rescaling, and relates it to current practice in population genetics simulations. It shows that some population genetic statistics are scaleable while others are not. Additionally, it shows that there are likely to be problems with rescaling when simulating large chromosomal regions, due to the non-linear relation between the physical distance between a pair of separate nucleotide sites and the frequency of recombination between them. Other difficulties with rescaling can arise in connection with simulations of selection on complex traits, and with populations that reproduce partly by self-fertilization or asexual reproduction. A number of recommendations are made for good practice in relation to rescaling.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12803318/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145992137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Implicit solvent models (ISMs) promise to deliver the accuracy of explicit solvent simulations at a fraction of the computational cost. However, despite decades of development, their accuracy has remained insufficient for many critical applications, particularly for simulating protein folding and the behavior of intrinsically disordered proteins. Developing a transferable, data-driven ISM that overcomes the limitations of traditional analytical formulas remains a central challenge in computational chemistry. Here we address this challenge by introducing a novel strategy that distills the evolutionary information learned by a protein language model, ESM3, into a computationally efficient graph neural network (GNN). We show that this GNN potential, trained on effective energies from ESM3, is robust enough to drive stable, long-timescale molecular dynamics simulations. When combined with a standard electrostatics term, our hybrid model accurately reproduces protein folding free-energy landscapes and predicts the structural ensembles of intrinsically disordered proteins. This approach yields a single, unified model that is transferable across both folded and disordered protein states, resolving a long-standing limitation of conventional ISMs. By successfully distilling evolutionary knowledge into a physical potential, our work delivers a foundational implicit solvent model poised to accelerate the development of predictive, large-scale simulation tools.
{"title":"Knowledge Distillation of a Protein Language Model Yields a Foundational Implicit Solvent Model.","authors":"Justin Airas, Bin Zhang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Implicit solvent models (ISMs) promise to deliver the accuracy of explicit solvent simulations at a fraction of the computational cost. However, despite decades of development, their accuracy has remained insufficient for many critical applications, particularly for simulating protein folding and the behavior of intrinsically disordered proteins. Developing a transferable, data-driven ISM that overcomes the limitations of traditional analytical formulas remains a central challenge in computational chemistry. Here we address this challenge by introducing a novel strategy that distills the evolutionary information learned by a protein language model, ESM3, into a computationally efficient graph neural network (GNN). We show that this GNN potential, trained on effective energies from ESM3, is robust enough to drive stable, long-timescale molecular dynamics simulations. When combined with a standard electrostatics term, our hybrid model accurately reproduces protein folding free-energy landscapes and predicts the structural ensembles of intrinsically disordered proteins. This approach yields a single, unified model that is transferable across both folded and disordered protein states, resolving a long-standing limitation of conventional ISMs. By successfully distilling evolutionary knowledge into a physical potential, our work delivers a foundational implicit solvent model poised to accelerate the development of predictive, large-scale simulation tools.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12803332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145992156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jacob Sumner, Grace Meng, Naomi Brandt, Alex T Grigas, Andrés Córdoba, Mark D Shattuck, Corey S O'Hern
A goal of computational studies of protein-protein interfaces (PPIs) is to predict the binding site between two monomers that form a heterodimer. The simplest version of this problem is to rigidly re-dock the bound forms of the monomers, which involves generating computational models of the heterodimer and then scoring them to determine the most native-like models. Scoring functions have been assessed previously using rank- and classification-based metrics, however, these methods are sensitive to the number and quality of models in the scoring function training set. We assess the accuracy of seven PPI scoring functions by comparing their scores to a measure of structural similarity to the x-ray crystal structure (i.e. the DockQ score) for a non-redundant set of heterodimers from the Protein Data Bank. For each heterodimer, we generate re-docked models uniformly sampled over DockQ and calculate the Spearman correlation between the PPI scores and DockQ. For some targets, the scores and DockQ are highly correlated; however, for many targets, there are weak correlations. Several physical features can explain the difference between difficult- and easy-to-score targets. For example, strong correlations exist between the score and DockQ for targets with highly intertwined monomers and many interface contacts. We also develop a new score based on only three physical features that matches or exceeds the performance of current PPI scoring functions. These results emphasize that PPI prediction can be improved by focusing on correlations between the PPI score and DockQ and incorporating more discriminating physical features into PPI scoring functions.
{"title":"Assessment of scoring functions for computational models of protein-protein interfaces.","authors":"Jacob Sumner, Grace Meng, Naomi Brandt, Alex T Grigas, Andrés Córdoba, Mark D Shattuck, Corey S O'Hern","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>A goal of computational studies of protein-protein interfaces (PPIs) is to predict the binding site between two monomers that form a heterodimer. The simplest version of this problem is to rigidly re-dock the bound forms of the monomers, which involves generating computational models of the heterodimer and then scoring them to determine the most native-like models. Scoring functions have been assessed previously using rank- and classification-based metrics, however, these methods are sensitive to the number and quality of models in the scoring function training set. We assess the accuracy of seven PPI scoring functions by comparing their scores to a measure of structural similarity to the x-ray crystal structure (i.e. the DockQ score) for a non-redundant set of heterodimers from the Protein Data Bank. For each heterodimer, we generate re-docked models uniformly sampled over DockQ and calculate the Spearman correlation between the PPI scores and DockQ. For some targets, the scores and DockQ are highly correlated; however, for many targets, there are weak correlations. Several physical features can explain the difference between difficult- and easy-to-score targets. For example, strong correlations exist between the score and DockQ for targets with highly intertwined monomers and many interface contacts. We also develop a new score based on only three physical features that matches or exceeds the performance of current PPI scoring functions. These results emphasize that PPI prediction can be improved by focusing on correlations between the PPI score and DockQ and incorporating more discriminating physical features into PPI scoring functions.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12803336/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145991921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Allostery is a fundamental mechanism of protein regulation and is commonly interpreted as modulating enzymatic activity or product abundance. Here we show that this view is incomplete. Using a stochastic model of allosteric regulation combined with an information-theoretic analysis, we quantify the mutual information between an enzyme's regulatory state and the states of downstream signaling components. Beyond controlling steady-state production levels, allostery also regulates the timing and duration over which information is transmitted. By tuning the temporal operating regime of signaling pathways, allosteric regulation enables distinct dynamical outcomes from identical molecular components, providing a physical mechanism for temporal information flow, signaling specificity, and coordination without changes in metabolic pathways.
{"title":"Allostery Beyond Amplification: Temporal Regulation of Signaling Information.","authors":"Pedro Pessoa, Steve Pressé, S Banu Ozkan","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Allostery is a fundamental mechanism of protein regulation and is commonly interpreted as modulating enzymatic activity or product abundance. Here we show that this view is incomplete. Using a stochastic model of allosteric regulation combined with an information-theoretic analysis, we quantify the mutual information between an enzyme's regulatory state and the states of downstream signaling components. Beyond controlling steady-state production levels, allostery also regulates the timing and duration over which information is transmitted. By tuning the temporal operating regime of signaling pathways, allosteric regulation enables distinct dynamical outcomes from identical molecular components, providing a physical mechanism for temporal information flow, signaling specificity, and coordination without changes in metabolic pathways.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12803326/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145992011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A hallmark of aging is loss of information in gene regulatory networks. These networks are tightly connected, raising the question of whether information could be restored by perturbing single genes. We develop a simple theoretical framework for information transmission in gene regulatory networks that describes the information gained or lost when a gene is "knocked in" (exogenously expressed). Applying the framework to gene expression data from muscle cells in young and old mice, we find that single knock-ins can restore network information by up to 10%. Our work advances the study of information flow in networks and identifies potential gene targets for rejuvenation.
{"title":"Restoring information in aged gene regulatory networks by single knock-ins.","authors":"Ryan LeFebre, Fabrisia Ambrosio, Andrew Mugler","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>A hallmark of aging is loss of information in gene regulatory networks. These networks are tightly connected, raising the question of whether information could be restored by perturbing single genes. We develop a simple theoretical framework for information transmission in gene regulatory networks that describes the information gained or lost when a gene is \"knocked in\" (exogenously expressed). Applying the framework to gene expression data from muscle cells in young and old mice, we find that single knock-ins can restore network information by up to 10%. Our work advances the study of information flow in networks and identifies potential gene targets for rejuvenation.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12803314/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145992205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohsen Nakhaei, Alison Pouch, Silvani Amin, Matthew Daemer, Christian Herz, Natalie Yushkevich, Lourdes Al Ghofaily, Nimesh Desai, Joseph Bavaria, Matthew Jolley, Wensi Wu
Aortic valve (AV) biomechanics play a critical role in maintaining normal cardiac function. Pathological variations, particularly in bicuspid aortic valves (BAVs), alter leaflet loading, increase strain, and accelerate disease progression. Accurate, patient-specific characterization of valve geometry and deformation is essential for predicting disease progression and guiding durable repair. Current imaging and computational methods often fail to capture rapid valve motion and complex patient-specific features. To address these challenges, we combined image registration with finite element method (FEM) to enhance AV tracking and biomechanical assessment. Patient-specific valve geometries from 4D transesophageal echocardiography (TEE) and CT were used in FEM to model AV closure and generate intermediate deformation states. The FEM-generated states facilitated leaflet tracking, while the registration algorithm corrected mismatches between simulation and image. Across 20 patients, FEM-augmented registration improved accuracy by 40% compared with direct registration (33% for TEE, 46% for CT). This improvement enabled more reliable strain estimation directly from imaging and reducing uncertainties from boundary conditions and material assumptions. Areal and Green-Lagrange strains, as well as effective strain, were quantified in adult trileaflet/bicuspid, and pediatric patients. Trileaflet adults showed uniform deformation, BAVs exhibited asymmetric strain, and pediatric valves had low mean areal strain with high variability. Convergence between trileaflet adult and pediatric valves in mean effective strain suggests volumetric deformation drives age- and size-related differences. The FEM-augmented registration framework enhances geometric tracking and provides clinically relevant insights into patient-specific AV deformation, supporting individualized intervention planning.
{"title":"Biomechanically Informed Image Registration for Patient-Specific Aortic Valve Strain Analysis.","authors":"Mohsen Nakhaei, Alison Pouch, Silvani Amin, Matthew Daemer, Christian Herz, Natalie Yushkevich, Lourdes Al Ghofaily, Nimesh Desai, Joseph Bavaria, Matthew Jolley, Wensi Wu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Aortic valve (AV) biomechanics play a critical role in maintaining normal cardiac function. Pathological variations, particularly in bicuspid aortic valves (BAVs), alter leaflet loading, increase strain, and accelerate disease progression. Accurate, patient-specific characterization of valve geometry and deformation is essential for predicting disease progression and guiding durable repair. Current imaging and computational methods often fail to capture rapid valve motion and complex patient-specific features. To address these challenges, we combined image registration with finite element method (FEM) to enhance AV tracking and biomechanical assessment. Patient-specific valve geometries from 4D transesophageal echocardiography (TEE) and CT were used in FEM to model AV closure and generate intermediate deformation states. The FEM-generated states facilitated leaflet tracking, while the registration algorithm corrected mismatches between simulation and image. Across 20 patients, FEM-augmented registration improved accuracy by 40% compared with direct registration (33% for TEE, 46% for CT). This improvement enabled more reliable strain estimation directly from imaging and reducing uncertainties from boundary conditions and material assumptions. Areal and Green-Lagrange strains, as well as effective strain, were quantified in adult trileaflet/bicuspid, and pediatric patients. Trileaflet adults showed uniform deformation, BAVs exhibited asymmetric strain, and pediatric valves had low mean areal strain with high variability. Convergence between trileaflet adult and pediatric valves in mean effective strain suggests volumetric deformation drives age- and size-related differences. The FEM-augmented registration framework enhances geometric tracking and provides clinically relevant insights into patient-specific AV deformation, supporting individualized intervention planning.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12803325/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145992117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human cognition integrates information across nested timescales. While the cortex exhibits hierarchical Temporal Receptive Windows (TRWs), local circuits often display heterogeneous time constants. To reconcile this, we trained biologically constrained deep networks, based on scale-invariant hippocampal time cells, on a language classification task mimicking the hierarchical structure of language (e.g., 'letters' forming 'words'). First, using a feedforward model (SITHCon), we found that a hierarchy of TRWs emerged naturally across layers, despite the network having an identical spectrum of time constants within layers. We then distilled these inductive priors into a biologically plausible recurrent architecture, SITH-RNN. Training a sequence of architectures ranging from generic RNNs to this restricted subset showed that the scale-invariant SITH-RNN learned faster with orders-of-magnitude fewer parameters, and generalized zero-shot to out-of-distribution timescales. These results suggest the brain employs scale-invariant, sequential priors - coding "what" happened "when" - making recurrent networks with such priors particularly well-suited to describe human cognition.
{"title":"Hierarchical temporal receptive windows and zero-shot timescale generalization in biologically constrained scale-invariant deep networks.","authors":"Aakash Sarkar, Marc W Howard","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Human cognition integrates information across nested timescales. While the cortex exhibits hierarchical Temporal Receptive Windows (TRWs), local circuits often display heterogeneous time constants. To reconcile this, we trained biologically constrained deep networks, based on scale-invariant hippocampal time cells, on a language classification task mimicking the hierarchical structure of language (e.g., 'letters' forming 'words'). First, using a feedforward model (SITHCon), we found that a hierarchy of TRWs emerged naturally across layers, despite the network having an identical spectrum of time constants within layers. We then distilled these inductive priors into a biologically plausible recurrent architecture, SITH-RNN. Training a sequence of architectures ranging from generic RNNs to this restricted subset showed that the scale-invariant SITH-RNN learned faster with orders-of-magnitude fewer parameters, and generalized zero-shot to out-of-distribution timescales. These results suggest the brain employs scale-invariant, sequential priors - coding \"what\" happened \"when\" - making recurrent networks with such priors particularly well-suited to describe human cognition.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12803329/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145992130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}