Maximizing Surface Single-Ni Sites on Hollow Carbon Sphere for Efficient CO2 Electroreduction

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2024-02-13 DOI:10.1021/acssuschemeng.3c06494
Dan Ping, Yi-Chen Feng, Shi-De Wu*, Feng Yi, Si-Yuan Cheng, Shi-Wen Wang, Jun-Feng Tian, Heng Wang, Xu-Zhao Yang, Dong-Jie Guo and Shao-Ming Fang*, 
{"title":"Maximizing Surface Single-Ni Sites on Hollow Carbon Sphere for Efficient CO2 Electroreduction","authors":"Dan Ping,&nbsp;Yi-Chen Feng,&nbsp;Shi-De Wu*,&nbsp;Feng Yi,&nbsp;Si-Yuan Cheng,&nbsp;Shi-Wen Wang,&nbsp;Jun-Feng Tian,&nbsp;Heng Wang,&nbsp;Xu-Zhao Yang,&nbsp;Dong-Jie Guo and Shao-Ming Fang*,&nbsp;","doi":"10.1021/acssuschemeng.3c06494","DOIUrl":null,"url":null,"abstract":"<p >Single-atom catalysts show great application potential due to their high catalytic efficiency but suffer from insufficient active site density and utilization. Herein, a robust single-atomic Ni catalyst anchored on porous hollow carbon spheres (Ni–N–HCS) was successfully synthesized via a pyrolysis approach employing SiO<sub>2</sub>-templated HCS, dicyandiamide, and Ni(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O as raw materials. Profiting from the abundant (3.47 wt %) and accessible single-Ni active sites and the robust hollow carbon architecture, this catalyst showed superior performance for electrochemical CO<sub>2</sub> reduction reaction in an H-type cell. A prominent Faradaic efficiency for CO (95.04%) can be achieved at a −0.70 V vs a reversible hydrogen electrode (RHE) and the value can even be kept at &gt;80% over a broad voltage range (−0.62 to −0.87 V vs RHE) with a desirable CO current density (10.88 mA·cm<sup>–2</sup>). In addition, the FE<sub>CO</sub> was kept almost unchanged during continuous electrolysis for 40 h. Significantly, Ni–N–HCS also exhibits an excellent CO selectivity of &gt;95% over the whole investigated potential window in the flow cell. We believe this work will provide a new possibility to build single-atom catalysts with maximized utilization for improving electrochemical performance.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.3c06494","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-atom catalysts show great application potential due to their high catalytic efficiency but suffer from insufficient active site density and utilization. Herein, a robust single-atomic Ni catalyst anchored on porous hollow carbon spheres (Ni–N–HCS) was successfully synthesized via a pyrolysis approach employing SiO2-templated HCS, dicyandiamide, and Ni(CH3COO)2·4H2O as raw materials. Profiting from the abundant (3.47 wt %) and accessible single-Ni active sites and the robust hollow carbon architecture, this catalyst showed superior performance for electrochemical CO2 reduction reaction in an H-type cell. A prominent Faradaic efficiency for CO (95.04%) can be achieved at a −0.70 V vs a reversible hydrogen electrode (RHE) and the value can even be kept at >80% over a broad voltage range (−0.62 to −0.87 V vs RHE) with a desirable CO current density (10.88 mA·cm–2). In addition, the FECO was kept almost unchanged during continuous electrolysis for 40 h. Significantly, Ni–N–HCS also exhibits an excellent CO selectivity of >95% over the whole investigated potential window in the flow cell. We believe this work will provide a new possibility to build single-atom catalysts with maximized utilization for improving electrochemical performance.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最大化空心碳球表面的单镍位,实现高效二氧化碳电还原
单原子催化剂因其催化效率高而显示出巨大的应用潜力,但却存在活性位点密度和利用率不足的问题。在此,我们采用热解方法,以二氧化硅模板的 HCS、双氰胺和 Ni(CH3COO)2-4H2O 为原料,成功合成了锚定在多孔空心碳球(Ni-N-HCS)上的强效单原子镍催化剂。这种催化剂具有丰富(3.47 wt %)、易获得的单镍活性位点和坚固的空心碳结构,因此在 H 型电池中进行电化学二氧化碳还原反应时表现出卓越的性能。与可逆氢电极(RHE)相比,在 -0.70 V 的电压下,一氧化碳的法拉第效率(95.04%)显著提高,在较宽的电压范围内(与 RHE 相比,在 -0.62 至 -0.87 V 的电压下),该值甚至可保持在 80%,一氧化碳电流密度达到理想水平(10.88 mA-cm-2)。此外,在连续电解 40 小时的过程中,FECO 几乎保持不变。值得注意的是,Ni-N-HCS 在流动池中的整个研究电位窗口内还表现出卓越的 CO 选择性,高达 95%。我们相信,这项工作将为构建具有最大利用率的单原子催化剂提供新的可能性,从而提高电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Ionic Liquid–Catalyzed Annulation of Biomass-Derived Alkyl Lactates: Time-Dependent Tunable Synthesis of Bioactive Dihydroquinoxalines and Quinoxalines Advancing Rare-Earth (4f) and Actinide (5f) Separation through Machine Learning and Automated High-Throughput Experiments Potassium Pyrosulfate-Assisted Roasting and Water Leaching for Selectively Li and Fe Recycling from Spent LiFePO4 Batteries Issue Publication Information Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1