Logan J. Augustine, Yufei Wang, Sara L. Adelman, Enrique R. Batista, Stosh A. Kozimor, Danny Perez, Joshua Schrier, Ping Yang
{"title":"Advancing Rare-Earth (4f) and Actinide (5f) Separation through Machine Learning and Automated High-Throughput Experiments","authors":"Logan J. Augustine, Yufei Wang, Sara L. Adelman, Enrique R. Batista, Stosh A. Kozimor, Danny Perez, Joshua Schrier, Ping Yang","doi":"10.1021/acssuschemeng.4c06166","DOIUrl":null,"url":null,"abstract":"Identifying improved and sustainable alternatives to “classic” separation techniques is an active research field due to its potential widespread impact in fundamental and applied chemistry. As basic purification methodologies, like liquid–liquid extraction, undergo continuous refinement by chemists and engineers, identifying new conditions that outperform existing techniques can be difficult. A major contributor to this challenging problem is the need to explore a vast experimental space to identify the precise conditions that optimize the separation procedure. The advent of artificial intelligence and the advancement of robotic technologies offer the potential to shift the traditional design paradigm. Toward that end, we applied a combination of Bayesian Optimization and high-throughput robotic experiments on the liquid–liquid extraction of thorium (Th<sup>4+</sup>) and demonstrated that this approach speeds up discovery and significantly accelerates the optimization process. By using Bayesian Optimization as a guide, our automated instrument carried out a total of 339 distribution ratio measurements, corresponding to 113 unique conditions, identifying the optimal experimental conditions with reduced experimental efforts by an estimated 74% compared to a traditional full screening approach. This time and cost saving is particularly significant for radioactive materials, as it not only is more economical and sustainable but also minimizes human exposure to radioactivity.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c06166","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying improved and sustainable alternatives to “classic” separation techniques is an active research field due to its potential widespread impact in fundamental and applied chemistry. As basic purification methodologies, like liquid–liquid extraction, undergo continuous refinement by chemists and engineers, identifying new conditions that outperform existing techniques can be difficult. A major contributor to this challenging problem is the need to explore a vast experimental space to identify the precise conditions that optimize the separation procedure. The advent of artificial intelligence and the advancement of robotic technologies offer the potential to shift the traditional design paradigm. Toward that end, we applied a combination of Bayesian Optimization and high-throughput robotic experiments on the liquid–liquid extraction of thorium (Th4+) and demonstrated that this approach speeds up discovery and significantly accelerates the optimization process. By using Bayesian Optimization as a guide, our automated instrument carried out a total of 339 distribution ratio measurements, corresponding to 113 unique conditions, identifying the optimal experimental conditions with reduced experimental efforts by an estimated 74% compared to a traditional full screening approach. This time and cost saving is particularly significant for radioactive materials, as it not only is more economical and sustainable but also minimizes human exposure to radioactivity.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.