Connecting metabolome and phenotype: recent advances in functional metabolomics tools for the identification of bioactive natural products

IF 10.2 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Natural Product Reports Pub Date : 2024-06-19 DOI:10.1039/d3np00050h
Giovanni Andrea Vitale , Christian Geibel , Vidit Minda , Mingxun Wang , Allegra T. Aron , Daniel Petras
{"title":"Connecting metabolome and phenotype: recent advances in functional metabolomics tools for the identification of bioactive natural products","authors":"Giovanni Andrea Vitale ,&nbsp;Christian Geibel ,&nbsp;Vidit Minda ,&nbsp;Mingxun Wang ,&nbsp;Allegra T. Aron ,&nbsp;Daniel Petras","doi":"10.1039/d3np00050h","DOIUrl":null,"url":null,"abstract":"<div><p>Covering: 1995 to 2023</p></div><div><p>Advances in bioanalytical methods, particularly mass spectrometry, have provided valuable molecular insights into the mechanisms of life. Non-targeted metabolomics aims to detect and (relatively) quantify all observable small molecules present in a biological system. By comparing small molecule abundances between different conditions or timepoints in a biological system, researchers can generate new hypotheses and begin to understand causes of observed phenotypes. Functional metabolomics aims to investigate the functional roles of metabolites at the scale of the metabolome. However, most functional metabolomics studies rely on indirect measurements and correlation analyses, which leads to ambiguity in the precise definition of functional metabolomics. In contrast, the field of natural products has a history of identifying the structures and bioactivities of primary and specialized metabolites. Here, we propose to expand and reframe functional metabolomics by integrating concepts from the fields of natural products and chemical biology. We highlight emerging functional metabolomics approaches that shift the focus from correlation to physical interactions, and we discuss how this allows researchers to uncover causal relationships between molecules and phenotypes.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0265056824000357","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Covering: 1995 to 2023

Advances in bioanalytical methods, particularly mass spectrometry, have provided valuable molecular insights into the mechanisms of life. Non-targeted metabolomics aims to detect and (relatively) quantify all observable small molecules present in a biological system. By comparing small molecule abundances between different conditions or timepoints in a biological system, researchers can generate new hypotheses and begin to understand causes of observed phenotypes. Functional metabolomics aims to investigate the functional roles of metabolites at the scale of the metabolome. However, most functional metabolomics studies rely on indirect measurements and correlation analyses, which leads to ambiguity in the precise definition of functional metabolomics. In contrast, the field of natural products has a history of identifying the structures and bioactivities of primary and specialized metabolites. Here, we propose to expand and reframe functional metabolomics by integrating concepts from the fields of natural products and chemical biology. We highlight emerging functional metabolomics approaches that shift the focus from correlation to physical interactions, and we discuss how this allows researchers to uncover causal relationships between molecules and phenotypes.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连接代谢组和表型:用于鉴定生物活性天然产物的功能代谢组学工具的最新进展。
覆盖范围1995 年至 2023 年生物分析方法的发展,尤其是质谱分析方法的发展,为人们提供了了解生命机理的宝贵分子信息。非靶向代谢组学旨在检测和(相对)量化生物系统中存在的所有可观察到的小分子。通过比较生物系统中不同条件或不同时间点的小分子丰度,研究人员可以提出新的假设,并开始了解观察到的表型的原因。功能代谢组学旨在研究代谢物在代谢组尺度上的功能作用。然而,大多数功能代谢组学研究都依赖于间接测量和相关分析,这导致功能代谢组学的精确定义模糊不清。相比之下,天然产物领域在鉴定初级和特殊代谢物的结构和生物活性方面有着悠久的历史。在此,我们建议通过整合天然产物和化学生物学领域的概念来扩展和重构功能代谢组学。我们将重点介绍新出现的功能代谢组学方法,这些方法将重点从相关性转移到了物理相互作用上,我们还将讨论这种方法如何让研究人员发现分子与表型之间的因果关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Natural Product Reports
Natural Product Reports 化学-生化与分子生物学
CiteScore
21.20
自引率
3.40%
发文量
127
审稿时长
1.7 months
期刊介绍: Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis. With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results. NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.
期刊最新文献
The dichapetalins and dichapetalin-type compounds: structural diversity, bioactivity, and future research perspectives. Biosynthesis, biological activities, and structure-activity relationships of decalin-containing tetramic acid derivatives isolated from fungi. Advances, opportunities, and challenges in methods for interrogating the structure activity relationships of natural products. Back cover Purine nucleoside antibiotics: recent synthetic advances harnessing chemistry and biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1