Jonathan J Park, Sy-Miin Chow, Sacha Epskamp, Peter C M Molenaar
{"title":"Subgrouping with Chain Graphical VAR Models.","authors":"Jonathan J Park, Sy-Miin Chow, Sacha Epskamp, Peter C M Molenaar","doi":"10.1080/00273171.2023.2289058","DOIUrl":null,"url":null,"abstract":"<p><p>Recent years have seen the emergence of an \"idio-thetic\" class of methods to bridge the gap between nomothetic and idiographic inference. These methods describe nomothetic trends in idiographic processes by pooling intraindividual information across individuals to inform group-level inference or vice versa. The current work introduces a novel \"idio-thetic\" model: the subgrouped chain graphical vector autoregression (scGVAR). The scGVAR is unique in its ability to identify subgroups of individuals who share common dynamic network structures in both lag(1) and contemporaneous effects. Results from Monte Carlo simulations indicate that the scGVAR shows promise over similar approaches when clusters of individuals differ in their contemporaneous dynamics and in showing increased sensitivity in detecting nuanced group differences while keeping Type-I error rates low. In contrast, a competing approach-the Alternating Least Squares VAR (ALS VAR) performs well when groups were separated by larger distances. Further considerations are provided regarding applications of the ALS VAR and scGVAR on real data and the strengths and limitations of both methods.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"543-565"},"PeriodicalIF":5.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187704/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2023.2289058","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent years have seen the emergence of an "idio-thetic" class of methods to bridge the gap between nomothetic and idiographic inference. These methods describe nomothetic trends in idiographic processes by pooling intraindividual information across individuals to inform group-level inference or vice versa. The current work introduces a novel "idio-thetic" model: the subgrouped chain graphical vector autoregression (scGVAR). The scGVAR is unique in its ability to identify subgroups of individuals who share common dynamic network structures in both lag(1) and contemporaneous effects. Results from Monte Carlo simulations indicate that the scGVAR shows promise over similar approaches when clusters of individuals differ in their contemporaneous dynamics and in showing increased sensitivity in detecting nuanced group differences while keeping Type-I error rates low. In contrast, a competing approach-the Alternating Least Squares VAR (ALS VAR) performs well when groups were separated by larger distances. Further considerations are provided regarding applications of the ALS VAR and scGVAR on real data and the strengths and limitations of both methods.
期刊介绍:
Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.