Enhancement of flow mixing using a two-stage EHD gas pump with electrodes anchored at one corner of channel

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electrostatics Pub Date : 2024-02-13 DOI:10.1016/j.elstat.2024.103903
S.-C. Lin , S.-L. Wu , S.-H. Liou , F.C. Lai
{"title":"Enhancement of flow mixing using a two-stage EHD gas pump with electrodes anchored at one corner of channel","authors":"S.-C. Lin ,&nbsp;S.-L. Wu ,&nbsp;S.-H. Liou ,&nbsp;F.C. Lai","doi":"10.1016/j.elstat.2024.103903","DOIUrl":null,"url":null,"abstract":"<div><p>The present study examines the use of a two-stage electrohydrodynamic (EHD) gas pump with its electrodes assembly anchored at one corner of a square channel to modify the characteristics of flow inside the channel. Specifically, the proposed EHD pump is examined for its effectiveness in enhancing flow mixing as well as reducing the power requirement. The present study is also aimed at confirming one of the important conclusions drawn from the authors’ earlier works that, given the same number of emitting electrodes, the performance of an EHD pump can be specifically tailored by rearranging the location and orientation of the electrodes so that the modified characteristics of flow can achieve the desired effect. To evaluate the effectiveness of the proposed electrode configuration, the performance of the pump is compared with that of a previous study in which a two-stage gas pump utilizes an electrode assembly mounted on the two parallel walls. For both pumps, the emitting electrodes are flush mounted on the channel walls so that the air flow produced is similar to that of a wall jet. Through the performance assessment, the results obtained from the present study can provide useful information for practical applications of EHD gas pumps.</p></div>","PeriodicalId":54842,"journal":{"name":"Journal of Electrostatics","volume":"128 ","pages":"Article 103903"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrostatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030438862400010X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The present study examines the use of a two-stage electrohydrodynamic (EHD) gas pump with its electrodes assembly anchored at one corner of a square channel to modify the characteristics of flow inside the channel. Specifically, the proposed EHD pump is examined for its effectiveness in enhancing flow mixing as well as reducing the power requirement. The present study is also aimed at confirming one of the important conclusions drawn from the authors’ earlier works that, given the same number of emitting electrodes, the performance of an EHD pump can be specifically tailored by rearranging the location and orientation of the electrodes so that the modified characteristics of flow can achieve the desired effect. To evaluate the effectiveness of the proposed electrode configuration, the performance of the pump is compared with that of a previous study in which a two-stage gas pump utilizes an electrode assembly mounted on the two parallel walls. For both pumps, the emitting electrodes are flush mounted on the channel walls so that the air flow produced is similar to that of a wall jet. Through the performance assessment, the results obtained from the present study can provide useful information for practical applications of EHD gas pumps.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用电极固定在通道一角的双级 EHD 气体泵加强水流混合
本研究探讨了如何使用双级电流体动力(EHD)气体泵(其电极组件固定在方形通道的一角)来改变通道内的流动特性。具体而言,本研究考察了所提议的 EHD 泵在增强流动混合和降低功率要求方面的有效性。本研究还旨在证实作者在早期研究中得出的一个重要结论,即在发射电极数量相同的情况下,可以通过重新排列电极的位置和方向来专门调整 EHD 泵的性能,从而使改变后的流动特性达到预期效果。为了评估所建议的电极配置的有效性,我们将该泵的性能与之前的一项研究进行了比较,在该研究中,双级气体泵使用了安装在两个平行壁上的电极组件。对于这两种泵,发射电极都平齐地安装在通道壁上,因此产生的气流类似于壁喷射。通过性能评估,本研究获得的结果可为 EHD 气体泵的实际应用提供有用信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electrostatics
Journal of Electrostatics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
11.10%
发文量
81
审稿时长
49 days
期刊介绍: The Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the field of electrostatics. We invite submissions in the following areas: Electrostatic charge separation processes. Electrostatic manipulation of particles, droplets, and biological cells. Electrostatically driven or controlled fluid flow. Electrostatics in the gas phase.
期刊最新文献
Editorial Board Optimisation of CuO/AC, Fe2O3/AC synergistic multi-electrode DBD reactor for degradation of ATZ in water Triboelectric charging of polydisperse particles in a developed pipe flow Effect of field emission on contact spark in the spark test apparatus A theoretical approach towards developing space charge formation in lossy dielectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1