Energy optimization with authentication and cost effective storage in the wireless sensor IoTs using blockchain

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computational Intelligence Pub Date : 2024-02-13 DOI:10.1111/coin.12630
Turki Ali Alghamdi, Nadeem Javaid
{"title":"Energy optimization with authentication and cost effective storage in the wireless sensor IoTs using blockchain","authors":"Turki Ali Alghamdi,&nbsp;Nadeem Javaid","doi":"10.1111/coin.12630","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a hybrid blockchain-based authentication scheme is proposed that provides the mechanism to authenticate the randomly distributed sensor IoTs. These nodes are divided into three types: ordinary nodes, cluster heads and sink nodes. For authentication of these nodes in a Wireless Sensor IoTs (WSIoTs), a hybrid blockchain model is introduced. It consists of both private and public blockchains, which are used to authenticate ordinary nodes and cluster heads, respectively. Moreover, to handle the issue of cluster head failure due to inefficient energy consumption, Improved Heterogeneous Gateway-based Energy-Aware Multi-hop Routing (I-HMGEAR) protocol is proposed in combination with blockchain. It provides a mechanism to efficiently use the overall energy of the network. Besides, the processed data of subnetworks is stored on blockchain that causes the issue of increased monetary cost. To solve this issue, an external platform known as InterPlanetary File System (IPFS) is used, which distributively stores the data on different devices. The simulation results show that our proposed model outperforms existing clustering scheme in terms of network lifetime and data storage cost of the WSIoTs. Our proposed scheme increases the lifetime of the network as compared to existing trust management model, intrusion prevention and multi WSN authentication schemes by 17.5%, 24.2% and 19.6%, respectively.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12630","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a hybrid blockchain-based authentication scheme is proposed that provides the mechanism to authenticate the randomly distributed sensor IoTs. These nodes are divided into three types: ordinary nodes, cluster heads and sink nodes. For authentication of these nodes in a Wireless Sensor IoTs (WSIoTs), a hybrid blockchain model is introduced. It consists of both private and public blockchains, which are used to authenticate ordinary nodes and cluster heads, respectively. Moreover, to handle the issue of cluster head failure due to inefficient energy consumption, Improved Heterogeneous Gateway-based Energy-Aware Multi-hop Routing (I-HMGEAR) protocol is proposed in combination with blockchain. It provides a mechanism to efficiently use the overall energy of the network. Besides, the processed data of subnetworks is stored on blockchain that causes the issue of increased monetary cost. To solve this issue, an external platform known as InterPlanetary File System (IPFS) is used, which distributively stores the data on different devices. The simulation results show that our proposed model outperforms existing clustering scheme in terms of network lifetime and data storage cost of the WSIoTs. Our proposed scheme increases the lifetime of the network as compared to existing trust management model, intrusion prevention and multi WSN authentication schemes by 17.5%, 24.2% and 19.6%, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用区块链在无线传感器物联网中通过认证和低成本存储实现能源优化
本文提出了一种基于区块链的混合认证方案,为随机分布的传感器物联网提供了认证机制。这些节点分为三种类型:普通节点、簇头和汇节点。为了在无线传感器物联网(WSIoTs)中对这些节点进行身份验证,本文引入了一种混合区块链模型。它由私有区块链和公共区块链组成,分别用于验证普通节点和簇头。此外,为了解决因低效能耗而导致簇头失效的问题,还提出了与区块链相结合的基于改进异构网关的能量感知多跳路由协议(I-HMGEAR)。它提供了一种有效利用网络整体能量的机制。此外,子网络的处理数据存储在区块链上,会导致货币成本增加的问题。为了解决这个问题,我们使用了一个名为 "跨行星文件系统(IPFS)"的外部平台,它将数据分布存储在不同的设备上。仿真结果表明,就 WSIoTs 的网络寿命和数据存储成本而言,我们提出的模型优于现有的聚类方案。与现有的信任管理模式、入侵防御和多 WSN 身份验证方案相比,我们提出的方案可将网络寿命分别提高 17.5%、24.2% 和 19.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
期刊最新文献
Comprehensive analysis of feature-algorithm interactions for fall detection across age groups via machine learning An Efficient and Robust 3D Medical Image Classification Approach Based on 3D CNN, Time-Distributed 2D CNN-BLSTM Models, and mRMR Feature Selection Modified local Granger causality analysis based on Peter-Clark algorithm for multivariate time series prediction on IoT data A Benchmark Proposal for Non-Generative Fair Adversarial Learning Strategies Using a Fairness-Utility Trade-off Metric Synthetic Image Generation Using Deep Learning: A Systematic Literature Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1