Wen Liu , Yun Li , Wenmin Jiang , Ping'an Peng , Yongqiang Xiong
{"title":"Pyrolysis experiments of model compounds to explore carbon isotope fractionation in propane from natural gas","authors":"Wen Liu , Yun Li , Wenmin Jiang , Ping'an Peng , Yongqiang Xiong","doi":"10.1016/j.orggeochem.2024.104752","DOIUrl":null,"url":null,"abstract":"<div><p>Investigating the mechanisms that determine the bulk and position-specific carbon isotopic distributions of propane in natural gas will help elucidate its formation and evolution. We used octadecane and squalane as model compounds that give simple precursors for gas production in gold-tube isothermal pyrolysis experiments to study the variations in intermolecular and intramolecular distributions of isotopes in the generated gaseous hydrocarbons. The δ<sup>13</sup>C values of the products and inverses of their carbon numbers (1/<em>n</em> where <em>n</em> = C<sub>1</sub>–C<sub>5</sub>) showed a negative linear relationship versus maturity, indicating that they formed by homolytic cleavage of C–C bonds and that the precursors showed homogeneous distributions of carbon isotopes. However, the significant difference in the kinetic isotopic effects (KIEs) of the gas generated by cracking of two model compounds under the same experimental conditions is not readily explained by single homolytic bond cleavage. The results indicate that besides the KIE of C–C bond cleavage, the bulk and position-specific carbon isotopic compositions of propane are related to the chemical and isotopic structures of the precursors and the propane transformation ratio. Based on the sites of C–C bond cleavage, two isotopic fractionation patterns (i.e., normal propyl and isopropyl models) may explain the bulk and position-specific carbon isotopic distributions of the generated propane. According to the propyl model, propane originates from (normal) propyl structures (CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>*) in the precursor via C–C bond cleavage at a terminal site of a propyl group, while the isopropyl model involves propane derived from isopropyl structures (CH<sub>3</sub>CH*CH<sub>3</sub>) in the precursor, with C–C bond cleavage at the central site. Simulations show that these distributions for propane cracked from octadecane closely follow the propyl model, whereas propane generated from squalane showed mixed contributions from both models, and its bulk and position-specific carbon isotopic distributions depend on the proportions of propyl and isopropyl structures in the precursors. Variations of propane’s position-specific carbon isotopic distributions during the main stage of propane generation indicate that free radical reactions are the main pathway for thermogenic propane formation, resulting in similar KIEs for propane terminal and central carbons. Therefore, the position-specific carbon isotopic distribution of propane can provide evidence of its formation mechanism and shows potential for revealing the origin and evolution of natural gas.</p></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"189 ","pages":"Article 104752"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146638024000172","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Investigating the mechanisms that determine the bulk and position-specific carbon isotopic distributions of propane in natural gas will help elucidate its formation and evolution. We used octadecane and squalane as model compounds that give simple precursors for gas production in gold-tube isothermal pyrolysis experiments to study the variations in intermolecular and intramolecular distributions of isotopes in the generated gaseous hydrocarbons. The δ13C values of the products and inverses of their carbon numbers (1/n where n = C1–C5) showed a negative linear relationship versus maturity, indicating that they formed by homolytic cleavage of C–C bonds and that the precursors showed homogeneous distributions of carbon isotopes. However, the significant difference in the kinetic isotopic effects (KIEs) of the gas generated by cracking of two model compounds under the same experimental conditions is not readily explained by single homolytic bond cleavage. The results indicate that besides the KIE of C–C bond cleavage, the bulk and position-specific carbon isotopic compositions of propane are related to the chemical and isotopic structures of the precursors and the propane transformation ratio. Based on the sites of C–C bond cleavage, two isotopic fractionation patterns (i.e., normal propyl and isopropyl models) may explain the bulk and position-specific carbon isotopic distributions of the generated propane. According to the propyl model, propane originates from (normal) propyl structures (CH3CH2CH2*) in the precursor via C–C bond cleavage at a terminal site of a propyl group, while the isopropyl model involves propane derived from isopropyl structures (CH3CH*CH3) in the precursor, with C–C bond cleavage at the central site. Simulations show that these distributions for propane cracked from octadecane closely follow the propyl model, whereas propane generated from squalane showed mixed contributions from both models, and its bulk and position-specific carbon isotopic distributions depend on the proportions of propyl and isopropyl structures in the precursors. Variations of propane’s position-specific carbon isotopic distributions during the main stage of propane generation indicate that free radical reactions are the main pathway for thermogenic propane formation, resulting in similar KIEs for propane terminal and central carbons. Therefore, the position-specific carbon isotopic distribution of propane can provide evidence of its formation mechanism and shows potential for revealing the origin and evolution of natural gas.
期刊介绍:
Organic Geochemistry serves as the only dedicated medium for the publication of peer-reviewed research on all phases of geochemistry in which organic compounds play a major role. The Editors welcome contributions covering a wide spectrum of subjects in the geosciences broadly based on organic chemistry (including molecular and isotopic geochemistry), and involving geology, biogeochemistry, environmental geochemistry, chemical oceanography and hydrology.
The scope of the journal includes research involving petroleum (including natural gas), coal, organic matter in the aqueous environment and recent sediments, organic-rich rocks and soils and the role of organics in the geochemical cycling of the elements.
Sedimentological, paleontological and organic petrographic studies will also be considered for publication, provided that they are geochemically oriented. Papers cover the full range of research activities in organic geochemistry, and include comprehensive review articles, technical communications, discussion/reply correspondence and short technical notes. Peer-reviews organised through three Chief Editors and a staff of Associate Editors, are conducted by well known, respected scientists from academia, government and industry. The journal also publishes reviews of books, announcements of important conferences and meetings and other matters of direct interest to the organic geochemical community.