Wearable and interactive multicolored photochromic fiber display

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2024-02-14 DOI:10.1038/s41377-024-01383-8
Pan Li, Yuwei Wang, Xiaoxian He, Yuyang Cui, Jingyu Ouyang, Ju Ouyang, Zicheng He, Jiayu Hu, Xiaojuan Liu, Hang Wei, Yu Wang, Xiaoling Lu, Qian Ji, Xinyuan Cai, Li Liu, Chong Hou, Ning Zhou, Shaowu Pan, Xiangru Wang, Huamin Zhou, Cheng-Wei Qiu, Yan-Qing Lu, Guangming Tao
{"title":"Wearable and interactive multicolored photochromic fiber display","authors":"Pan Li, Yuwei Wang, Xiaoxian He, Yuyang Cui, Jingyu Ouyang, Ju Ouyang, Zicheng He, Jiayu Hu, Xiaojuan Liu, Hang Wei, Yu Wang, Xiaoling Lu, Qian Ji, Xinyuan Cai, Li Liu, Chong Hou, Ning Zhou, Shaowu Pan, Xiangru Wang, Huamin Zhou, Cheng-Wei Qiu, Yan-Qing Lu, Guangming Tao","doi":"10.1038/s41377-024-01383-8","DOIUrl":null,"url":null,"abstract":"<p>Endowing flexible and adaptable fiber devices with light-emitting capabilities has the potential to revolutionize the current design philosophy of intelligent, wearable interactive devices. However, significant challenges remain in developing fiber devices when it comes to achieving uniform and customizable light effects while utilizing lightweight hardware. Here, we introduce a mass-produced, wearable, and interactive photochromic fiber that provides uniform multicolored light control. We designed independent waveguides inside the fiber to maintain total internal reflection of light as it traverses the fiber. The impact of excessive light leakage on the overall illuminance can be reduced by utilizing the saturable absorption effect of fluorescent materials to ensure light emission uniformity along the transmission direction. In addition, we coupled various fluorescent composite materials inside the fiber to achieve artificially controllable spectral radiation of multiple color systems in a single fiber. We prepared fibers on mass-produced kilometer-long using the thermal drawing method. The fibers can be directly integrated into daily wearable devices or clothing in various patterns and combined with other signal input components to control and display patterns as needed. This work provides a new perspective and inspiration to the existing field of fiber display interaction, paving the way for future human–machine integration.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01383-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Endowing flexible and adaptable fiber devices with light-emitting capabilities has the potential to revolutionize the current design philosophy of intelligent, wearable interactive devices. However, significant challenges remain in developing fiber devices when it comes to achieving uniform and customizable light effects while utilizing lightweight hardware. Here, we introduce a mass-produced, wearable, and interactive photochromic fiber that provides uniform multicolored light control. We designed independent waveguides inside the fiber to maintain total internal reflection of light as it traverses the fiber. The impact of excessive light leakage on the overall illuminance can be reduced by utilizing the saturable absorption effect of fluorescent materials to ensure light emission uniformity along the transmission direction. In addition, we coupled various fluorescent composite materials inside the fiber to achieve artificially controllable spectral radiation of multiple color systems in a single fiber. We prepared fibers on mass-produced kilometer-long using the thermal drawing method. The fibers can be directly integrated into daily wearable devices or clothing in various patterns and combined with other signal input components to control and display patterns as needed. This work provides a new perspective and inspiration to the existing field of fiber display interaction, paving the way for future human–machine integration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可穿戴的交互式多色光致变色纤维显示器
赋予灵活、适应性强的光纤设备发光功能,有可能彻底改变当前智能可穿戴互动设备的设计理念。然而,在利用轻型硬件实现均匀和可定制的光效方面,纤维设备的开发仍面临巨大挑战。在这里,我们介绍一种可量产、可穿戴、可交互的光致变色光纤,它能提供均匀的多色光控制。我们在光纤内部设计了独立的波导管,使光线在穿过光纤时保持内部全反射。利用荧光材料的可饱和吸收效应,确保光线沿传输方向均匀发射,从而减少过量漏光对整体照度的影响。此外,我们还在光纤内耦合了各种荧光复合材料,从而在单根光纤中实现了可人为控制的多种颜色系统的光谱辐射。我们采用热拉伸方法制备了长达千米的量产光纤。这种纤维可直接集成到日常可穿戴设备或服装中,形成各种图案,并可根据需要与其他信号输入组件结合,控制和显示图案。这项工作为现有的纤维显示交互领域提供了新的视角和灵感,为未来的人机一体化铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Light People: Prof. Daoxin Dai, Dr. Patrick Lo, and Prof. Yikai Su—innovators in silicon photonics Quantitative phase microscopies: accuracy comparison Excitation-wavelength-dependent persistent luminescence from single-component nonstoichiometric CaGaxO4:Bi for dynamic anti-counterfeiting Ultra-high brightness Micro-LEDs with wafer-scale uniform GaN-on-silicon epilayers Deep learning with photonic neural cellular automata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1