首页 > 最新文献

Light-Science & Applications最新文献

英文 中文
Phase-change VO2-based thermochromic smart windows 基于相变 VO2 的热致变色智能窗
Q1 OPTICS Pub Date : 2024-09-18 DOI: 10.1038/s41377-024-01560-9
Cancheng Jiang, Lanyue He, Qingdong Xuan, Yuan Liao, Jian-Guo Dai, Dangyuan Lei

Thermochromic coatings hold promise in reducing building energy consumption by dynamically regulating the heat gain of windows, which are often regarded as less energy-efficient components, across different seasons. Vanadium dioxide (VO2) stands out as a versatile thermochromic material for smart windows owing to its reversible metal-to-insulator transition (MIT) alongside correlated structural and optical properties. In this review, we delve into recent advancements in the phase-change VO2-based thermochromic coatings for smart windows, spanning from the macroscopic crystal level to the microscopic structural level (including elemental doping and micro/nano-engineering), as well as advances in controllable fabrication. It is notable that hybridizing functional elements/materials (e.g., W, Mo/SiO2, TiN) with VO2 in delicate structural designs (e.g., core-shell, optical cavity) brings new degrees of freedom for controlling the thermochromic properties, including the MIT temperature, luminous transmittance, solar-energy modulation ability and building-relevant multi-functionality. Additionally, we provide an overview of alternative chromogenic materials that could potentially complement or surpass the intrinsic limitations of VO2. By examining the landscape of emerging materials, we aim to broaden the scope of possibilities for smart window technologies. We also offer insights into the current challenges and prospects of VO2-based thermochromic smart windows, presenting a roadmap for advancing this field towards enhanced energy efficiency and sustainable building design. In summary, this review innovatively categorizes doping strategies and corresponding effects of VO2, underscores their crucial NIR-energy modulation ability for smart windows, pioneers a theoretical analysis of inverse core-shell structures, prioritizes practical engineering strategies for solar modulation in VO2 films, and summarizes complementary chromogenic materials, thus ultimately advancing VO2-based smart window technologies with a fresh perspective.

窗户通常被认为是能效较低的部件,而热致变色涂料可在不同季节动态调节窗户的得热量,从而有望降低建筑能耗。二氧化钒(VO2)具有可逆的金属-绝缘体转变(MIT)以及相关的结构和光学特性,因此是一种适用于智能窗户的多功能热致变色材料。在本综述中,我们将深入探讨基于相变二氧化钛的智能窗户热致变色涂层的最新进展,包括从宏观晶体水平到微观结构水平(包括元素掺杂和微/纳米工程),以及可控制造方面的进展。值得注意的是,将功能元素/材料(如 W、Mo/SiO2、TiN)与 VO2 混合在微妙的结构设计(如核壳、光腔)中,为控制热致变色特性带来了新的自由度,包括 MIT 温度、透光率、太阳能调制能力以及与建筑相关的多功能性。此外,我们还概述了有可能补充或超越 VO2 固有局限性的其他致色材料。通过对新兴材料的研究,我们旨在拓宽智能窗户技术的可能性范围。我们还深入探讨了基于 VO2 的热致变色智能窗目前面临的挑战和发展前景,提出了推动这一领域朝着提高能效和可持续建筑设计方向发展的路线图。总之,本综述创新性地对 VO2 的掺杂策略和相应效应进行了分类,强调了它们对智能窗户至关重要的近红外能量调节能力,开创性地对逆核壳结构进行了理论分析,优先考虑了 VO2 薄膜中太阳光调节的实用工程策略,并总结了互补的致色材料,从而最终以全新的视角推进了基于 VO2 的智能窗户技术。
{"title":"Phase-change VO2-based thermochromic smart windows","authors":"Cancheng Jiang, Lanyue He, Qingdong Xuan, Yuan Liao, Jian-Guo Dai, Dangyuan Lei","doi":"10.1038/s41377-024-01560-9","DOIUrl":"https://doi.org/10.1038/s41377-024-01560-9","url":null,"abstract":"<p>Thermochromic coatings hold promise in reducing building energy consumption by dynamically regulating the heat gain of windows, which are often regarded as less energy-efficient components, across different seasons. Vanadium dioxide (VO<sub>2</sub>) stands out as a versatile thermochromic material for smart windows owing to its reversible metal-to-insulator transition (MIT) alongside correlated structural and optical properties. In this review, we delve into recent advancements in the phase-change VO<sub>2</sub>-based thermochromic coatings for smart windows, spanning from the macroscopic crystal level to the microscopic structural level (including elemental doping and micro/nano-engineering), as well as advances in controllable fabrication. It is notable that hybridizing functional elements/materials (e.g., W, Mo/SiO<sub>2</sub>, TiN) with VO<sub>2</sub> in delicate structural designs (e.g., core-shell, optical cavity) brings new degrees of freedom for controlling the thermochromic properties, including the MIT temperature, luminous transmittance, solar-energy modulation ability and building-relevant multi-functionality. Additionally, we provide an overview of alternative chromogenic materials that could potentially complement or surpass the intrinsic limitations of VO<sub>2</sub>. By examining the landscape of emerging materials, we aim to broaden the scope of possibilities for smart window technologies. We also offer insights into the current challenges and prospects of VO<sub>2</sub>-based thermochromic smart windows, presenting a roadmap for advancing this field towards enhanced energy efficiency and sustainable building design. In summary, this review innovatively categorizes doping strategies and corresponding effects of VO<sub>2</sub>, underscores their crucial NIR-energy modulation ability for smart windows, pioneers a theoretical analysis of inverse core-shell structures, prioritizes practical engineering strategies for solar modulation in VO<sub>2</sub> films, and summarizes complementary chromogenic materials, thus ultimately advancing VO<sub>2</sub>-based smart window technologies with a fresh perspective.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical fibre based artificial compound eyes for direct static imaging and ultrafast motion detection 基于光纤的人造复眼,用于直接静态成像和超快运动检测
Q1 OPTICS Pub Date : 2024-09-18 DOI: 10.1038/s41377-024-01580-5
Heng Jiang, Chi Chung Tsoi, Weixing Yu, Mengchao Ma, Mingjie Li, Zuankai Wang, Xuming Zhang

Natural selection has driven arthropods to evolve fantastic natural compound eyes (NCEs) with a unique anatomical structure, providing a promising blueprint for artificial compound eyes (ACEs) to achieve static and dynamic perceptions in complex environments. Specifically, each NCE utilises an array of ommatidia, the imaging units, distributed on a curved surface to enable abundant merits. This has inspired the development of many ACEs using various microlens arrays, but the reported ACEs have limited performances in static imaging and motion detection. Particularly, it is challenging to mimic the apposition modality to effectively transmit light rays collected by many microlenses on a curved surface to a flat imaging sensor chip while preserving their spatial relationships without interference. In this study, we integrate 271 lensed polymer optical fibres into a dome-like structure to faithfully mimic the structure of NCE. Our ACE has several parameters comparable to the NCEs: 271 ommatidia versus 272 for bark beetles, and 180o field of view (FOV) versus 150–180o FOV for most arthropods. In addition, our ACE outperforms the typical NCEs by ~100 times in dynamic response: 31.3 kHz versus 205 Hz for Glossina morsitans. Compared with other reported ACEs, our ACE enables real-time, 180o panoramic direct imaging and depth estimation within its nearly infinite depth of field. Moreover, our ACE can respond to an angular motion up to 5.6×106 deg/s with the ability to identify translation and rotation, making it suitable for applications to capture high-speed objects, such as surveillance, unmanned aerial/ground vehicles, and virtual reality.

自然选择促使节肢动物进化出具有独特解剖结构的神奇天然复眼(NCE),为人工复眼(ACE)在复杂环境中实现静态和动态感知提供了前景广阔的蓝图。具体来说,每只自然复眼都利用分布在弯曲表面上的成像单元--膜阵列来实现丰富的优点。受此启发,人们利用各种微透镜阵列开发出了许多 ACE,但已报道的 ACE 在静态成像和运动检测方面的性能有限。特别是,如何模仿贴合模式,将曲面上许多微透镜收集到的光线有效地传输到平面成像传感器芯片上,同时保留它们之间的空间关系而不受干扰,是一项挑战。在这项研究中,我们将 271 个透镜聚合物光纤集成到一个圆顶状结构中,以忠实模拟 NCE 的结构。我们的 ACE 有几个参数与 NCE 相当:271 个 mmatidia(而树皮甲虫为 272 个)和 180o 视场(FOV)(而大多数节肢动物为 150-180o FOV)。此外,我们的 ACE 在动态响应方面比典型的 NCE 高出约 100 倍:Glossina morsitans 的动态响应为 31.3 kHz,而我们的 ACE 为 205 Hz。与其他已报道的 ACE 相比,我们的 ACE 可在其近乎无限的景深范围内实现实时、180° 全景直接成像和深度估计。此外,我们的 ACE 能够对高达 5.6×106 度/秒的角运动做出响应,并能识别平移和旋转,因此适用于捕捉高速物体的应用,如监控、无人机/地面车辆和虚拟现实。
{"title":"Optical fibre based artificial compound eyes for direct static imaging and ultrafast motion detection","authors":"Heng Jiang, Chi Chung Tsoi, Weixing Yu, Mengchao Ma, Mingjie Li, Zuankai Wang, Xuming Zhang","doi":"10.1038/s41377-024-01580-5","DOIUrl":"https://doi.org/10.1038/s41377-024-01580-5","url":null,"abstract":"<p>Natural selection has driven arthropods to evolve fantastic natural compound eyes (NCEs) with a unique anatomical structure, providing a promising blueprint for artificial compound eyes (ACEs) to achieve static and dynamic perceptions in complex environments. Specifically, each NCE utilises an array of ommatidia, the imaging units, distributed on a curved surface to enable abundant merits. This has inspired the development of many ACEs using various microlens arrays, but the reported ACEs have limited performances in static imaging and motion detection. Particularly, it is challenging to mimic the apposition modality to effectively transmit light rays collected by many microlenses on a curved surface to a flat imaging sensor chip while preserving their spatial relationships without interference. In this study, we integrate 271 lensed polymer optical fibres into a dome-like structure to faithfully mimic the structure of NCE. Our ACE has several parameters comparable to the NCEs: 271 ommatidia versus 272 for bark beetles, and 180<sup>o</sup> field of view (FOV) versus 150–180<sup>o</sup> FOV for most arthropods. In addition, our ACE outperforms the typical NCEs by ~100 times in dynamic response: 31.3 kHz versus 205 Hz for <i>Glossina morsitans</i>. Compared with other reported ACEs, our ACE enables real-time, 180<sup>o</sup> panoramic direct imaging and depth estimation within its nearly infinite depth of field. Moreover, our ACE can respond to an angular motion up to 5.6×10<sup>6</sup> deg/s with the ability to identify translation and rotation, making it suitable for applications to capture high-speed objects, such as surveillance, unmanned aerial/ground vehicles, and virtual reality.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards next-generation diagnostic pathology: AI-empowered label-free multiphoton microscopy 迈向下一代病理诊断:人工智能赋能的无标记多光子显微技术
Q1 OPTICS Pub Date : 2024-09-14 DOI: 10.1038/s41377-024-01597-w
Shu Wang, Junlin Pan, Xiao Zhang, Yueying Li, Wenxi Liu, Ruolan Lin, Xingfu Wang, Deyong Kang, Zhijun Li, Feng Huang, Liangyi Chen, Jianxin Chen

Diagnostic pathology, historically dependent on visual scrutiny by experts, is essential for disease detection. Advances in digital pathology and developments in computer vision technology have led to the application of artificial intelligence (AI) in this field. Despite these advancements, the variability in pathologists’ subjective interpretations of diagnostic criteria can lead to inconsistent outcomes. To meet the need for precision in cancer therapies, there is an increasing demand for accurate pathological diagnoses. Consequently, traditional diagnostic pathology is evolving towards “next-generation diagnostic pathology”, prioritizing on the development of a multi-dimensional, intelligent diagnostic approach. Using nonlinear optical effects arising from the interaction of light with biological tissues, multiphoton microscopy (MPM) enables high-resolution label-free imaging of multiple intrinsic components across various human pathological tissues. AI-empowered MPM further improves the accuracy and efficiency of diagnosis, holding promise for providing auxiliary pathology diagnostic methods based on multiphoton diagnostic criteria. In this review, we systematically outline the applications of MPM in pathological diagnosis across various human diseases, and summarize common multiphoton diagnostic features. Moreover, we examine the significant role of AI in enhancing multiphoton pathological diagnosis, including aspects such as image preprocessing, refined differential diagnosis, and the prognostication of outcomes. We also discuss the challenges and perspectives faced by the integration of MPM and AI, encompassing equipment, datasets, analytical models, and integration into the existing clinical pathways. Finally, the review explores the synergy between AI and label-free MPM to forge novel diagnostic frameworks, aiming to accelerate the adoption and implementation of intelligent multiphoton pathology systems in clinical settings.

病理诊断历来依赖专家的肉眼观察,对疾病检测至关重要。数字病理学的进步和计算机视觉技术的发展促使人工智能(AI)应用于这一领域。尽管取得了这些进步,但病理学家对诊断标准的主观解释存在差异,可能导致结果不一致。为了满足癌症治疗的精确性需求,对准确病理诊断的要求越来越高。因此,传统的病理诊断正朝着 "下一代病理诊断 "的方向发展,优先发展多维度的智能诊断方法。利用光与生物组织相互作用产生的非线性光学效应,多光子显微镜(MPM)可对各种人体病理组织的多种内在成分进行高分辨率无标记成像。人工智能驱动的多光子显微镜进一步提高了诊断的准确性和效率,有望提供基于多光子诊断标准的辅助病理诊断方法。在这篇综述中,我们系统地概述了多光子病理诊断在各种人类疾病病理诊断中的应用,并总结了常见的多光子诊断特征。此外,我们还探讨了人工智能在增强多光子病理诊断中的重要作用,包括图像预处理、精细鉴别诊断和预后判断等方面。我们还讨论了多光子病理诊断与人工智能整合所面临的挑战和前景,包括设备、数据集、分析模型以及与现有临床路径的整合。最后,本综述探讨了人工智能与无标记多光子病理学之间的协同作用,以构建新颖的诊断框架,从而加快智能多光子病理学系统在临床环境中的采用和实施。
{"title":"Towards next-generation diagnostic pathology: AI-empowered label-free multiphoton microscopy","authors":"Shu Wang, Junlin Pan, Xiao Zhang, Yueying Li, Wenxi Liu, Ruolan Lin, Xingfu Wang, Deyong Kang, Zhijun Li, Feng Huang, Liangyi Chen, Jianxin Chen","doi":"10.1038/s41377-024-01597-w","DOIUrl":"https://doi.org/10.1038/s41377-024-01597-w","url":null,"abstract":"<p>Diagnostic pathology, historically dependent on visual scrutiny by experts, is essential for disease detection. Advances in digital pathology and developments in computer vision technology have led to the application of artificial intelligence (AI) in this field. Despite these advancements, the variability in pathologists’ subjective interpretations of diagnostic criteria can lead to inconsistent outcomes. To meet the need for precision in cancer therapies, there is an increasing demand for accurate pathological diagnoses. Consequently, traditional diagnostic pathology is evolving towards “next-generation diagnostic pathology”, prioritizing on the development of a multi-dimensional, intelligent diagnostic approach. Using nonlinear optical effects arising from the interaction of light with biological tissues, multiphoton microscopy (MPM) enables high-resolution label-free imaging of multiple intrinsic components across various human pathological tissues. AI-empowered MPM further improves the accuracy and efficiency of diagnosis, holding promise for providing auxiliary pathology diagnostic methods based on multiphoton diagnostic criteria. In this review, we systematically outline the applications of MPM in pathological diagnosis across various human diseases, and summarize common multiphoton diagnostic features. Moreover, we examine the significant role of AI in enhancing multiphoton pathological diagnosis, including aspects such as image preprocessing, refined differential diagnosis, and the prognostication of outcomes. We also discuss the challenges and perspectives faced by the integration of MPM and AI, encompassing equipment, datasets, analytical models, and integration into the existing clinical pathways. Finally, the review explores the synergy between AI and label-free MPM to forge novel diagnostic frameworks, aiming to accelerate the adoption and implementation of intelligent multiphoton pathology systems in clinical settings.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications 用于低能超分辨率应用的掺镧离子上转换纳米粒子
Q1 OPTICS Pub Date : 2024-09-14 DOI: 10.1038/s41377-024-01547-6
Simone Lamon, Haoyi Yu, Qiming Zhang, Min Gu

Energy-intensive technologies and high-precision research require energy-efficient techniques and materials. Lens-based optical microscopy technology is useful for low-energy applications in the life sciences and other fields of technology, but standard techniques cannot achieve applications at the nanoscale because of light diffraction. Far-field super-resolution techniques have broken beyond the light diffraction limit, enabling 3D applications down to the molecular scale and striving to reduce energy use. Typically targeted super-resolution techniques have achieved high resolution, but the high light intensity needed to outperform competing optical transitions in nanomaterials may result in photo-damage and high energy consumption. Great efforts have been made in the development of nanomaterials to improve the resolution and efficiency of these techniques toward low-energy super-resolution applications. Lanthanide ion-doped upconversion nanoparticles that exhibit multiple long-lived excited energy states and emit upconversion luminescence have enabled the development of targeted super-resolution techniques that need low-intensity light. The use of lanthanide ion-doped upconversion nanoparticles in these techniques for emerging low-energy super-resolution applications will have a significant impact on life sciences and other areas of technology. In this review, we describe the dynamics of lanthanide ion-doped upconversion nanoparticles for super-resolution under low-intensity light and their use in targeted super-resolution techniques. We highlight low-energy super-resolution applications of lanthanide ion-doped upconversion nanoparticles, as well as the related research directions and challenges. Our aim is to analyze targeted super-resolution techniques using lanthanide ion-doped upconversion nanoparticles, emphasizing fundamental mechanisms governing transitions in lanthanide ions to surpass the diffraction limit with low-intensity light, and exploring their implications for low-energy nanoscale applications.

能源密集型技术和高精度研究需要节能技术和材料。基于透镜的光学显微镜技术可用于生命科学和其他技术领域的低能耗应用,但由于光衍射的原因,标准技术无法实现纳米级应用。远场超分辨率技术突破了光衍射的限制,实现了分子尺度的三维应用,并努力减少能源消耗。通常,有针对性的超分辨率技术可实现高分辨率,但要超越纳米材料中的竞争光学转换,所需的高光强可能会导致光损伤和高能耗。为了提高这些技术的分辨率和效率,实现低能耗超分辨率应用,人们在纳米材料的开发方面做出了巨大努力。掺杂镧系离子的上转换纳米粒子表现出多个长寿命激发能态并发出上转换发光,这使得需要低强度光的定向超分辨率技术得以发展。在这些技术中使用掺杂镧系离子的上转换纳米粒子,用于新兴的低能超分辨率应用,将对生命科学和其他技术领域产生重大影响。在这篇综述中,我们介绍了掺杂镧系离子的上转换纳米粒子在低强度光下的超分辨率动力学及其在定向超分辨率技术中的应用。我们重点介绍了掺杂镧系离子的上转换纳米粒子的低能超分辨应用,以及相关的研究方向和挑战。我们的目的是分析使用掺杂镧系离子的上转换纳米粒子的定向超分辨技术,强调镧系离子在低强度光下超越衍射极限的基本跃迁机制,并探讨其对低能纳米尺度应用的影响。
{"title":"Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications","authors":"Simone Lamon, Haoyi Yu, Qiming Zhang, Min Gu","doi":"10.1038/s41377-024-01547-6","DOIUrl":"https://doi.org/10.1038/s41377-024-01547-6","url":null,"abstract":"<p>Energy-intensive technologies and high-precision research require energy-efficient techniques and materials. Lens-based optical microscopy technology is useful for low-energy applications in the life sciences and other fields of technology, but standard techniques cannot achieve applications at the nanoscale because of light diffraction. Far-field super-resolution techniques have broken beyond the light diffraction limit, enabling 3D applications down to the molecular scale and striving to reduce energy use. Typically targeted super-resolution techniques have achieved high resolution, but the high light intensity needed to outperform competing optical transitions in nanomaterials may result in photo-damage and high energy consumption. Great efforts have been made in the development of nanomaterials to improve the resolution and efficiency of these techniques toward low-energy super-resolution applications. Lanthanide ion-doped upconversion nanoparticles that exhibit multiple long-lived excited energy states and emit upconversion luminescence have enabled the development of targeted super-resolution techniques that need low-intensity light. The use of lanthanide ion-doped upconversion nanoparticles in these techniques for emerging low-energy super-resolution applications will have a significant impact on life sciences and other areas of technology. In this review, we describe the dynamics of lanthanide ion-doped upconversion nanoparticles for super-resolution under low-intensity light and their use in targeted super-resolution techniques. We highlight low-energy super-resolution applications of lanthanide ion-doped upconversion nanoparticles, as well as the related research directions and challenges. Our aim is to analyze targeted super-resolution techniques using lanthanide ion-doped upconversion nanoparticles, emphasizing fundamental mechanisms governing transitions in lanthanide ions to surpass the diffraction limit with low-intensity light, and exploring their implications for low-energy nanoscale applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep-trap ultraviolet persistent phosphor for advanced optical storage application in bright environments 用于明亮环境中先进光存储应用的深阱紫外线持久荧光粉
Q1 OPTICS Pub Date : 2024-09-14 DOI: 10.1038/s41377-024-01533-y
Xulong Lv, Yanjie Liang, Yi Zhang, Dongxun Chen, Xihui Shan, Xiao-Jun Wang

Extensive research has been conducted on visible-light and longer-wavelength infrared-light storage phosphors, which are utilized as promising rewritable memory media for optical information storage applications in dark environments. However, storage phosphors emitting in the deep ultraviolet spectral region (200–300 nm) are relatively lacking. Here, we report an appealing deep-trap ultraviolet storage phosphor, ScBO3:Bi3+, which exhibits an ultra-narrowband light emission centered at 299 nm with a full width at half maximum (FWHM) of 0.21 eV and excellent X-ray energy storage capabilities. When persistently stimulated by longer-wavelength white/NIR light or heated at elevated temperatures, ScBO3:Bi3+ phosphor exhibits intense and long-lasting ultraviolet luminescence due to the interplay between defect levels and external stimulus, while the natural decay in the dark at room temperature is extremely weak after X-ray irradiation. The impact of the spectral distribution and illuminance of ambient light and ambient temperature on ultraviolet light emission has been studied by comprehensive experimental and theoretical investigations, which elucidate that both O vacancy and Sc interstitial serve as deep electron traps for enhanced and prolonged ultraviolet luminescence upon continuous optical or thermal stimulation. Based on the unique spectral features and trap distribution in ScBO3:Bi3+ phosphor, controllable optical information read-out is demonstrated via external light or heat manipulation, highlighting the great potential of ScBO3:Bi3+ phosphor for advanced optical storage application in bright environments.

人们对可见光和更长波长的红外光存储荧光粉进行了广泛的研究,这些荧光粉被用作黑暗环境中光学信息存储应用的可重写记忆媒体,前景十分广阔。然而,在深紫外光谱区(200-300 纳米)发光的存储荧光粉却相对缺乏。在此,我们报告了一种极具吸引力的深阱紫外存储荧光粉 ScBO3:Bi3+,它能发出以 299 纳米为中心、半最大值全宽(FWHM)为 0.21 eV 的超窄带光,并具有出色的 X 射线能量存储能力。当受到波长较长的白光/近红外光的持续刺激或在高温下加热时,ScBO3:Bi3+ 荧光在缺陷水平和外部刺激的相互作用下会表现出强烈而持久的紫外发光,而在室温下的暗处自然衰减在 X 射线照射后则非常微弱。通过全面的实验和理论研究,研究了环境光的光谱分布和照度以及环境温度对紫外光发射的影响,阐明了 O 空位和 Sc 间隙均可作为深层电子陷阱,在持续的光刺激或热刺激下增强和延长紫外发光。基于ScBO3:Bi3+荧光粉独特的光谱特征和陷阱分布,通过外部光或热操作,演示了可控的光学信息读出,凸显了ScBO3:Bi3+荧光粉在明亮环境下先进光存储应用的巨大潜力。
{"title":"Deep-trap ultraviolet persistent phosphor for advanced optical storage application in bright environments","authors":"Xulong Lv, Yanjie Liang, Yi Zhang, Dongxun Chen, Xihui Shan, Xiao-Jun Wang","doi":"10.1038/s41377-024-01533-y","DOIUrl":"https://doi.org/10.1038/s41377-024-01533-y","url":null,"abstract":"<p>Extensive research has been conducted on visible-light and longer-wavelength infrared-light storage phosphors, which are utilized as promising rewritable memory media for optical information storage applications in dark environments. However, storage phosphors emitting in the deep ultraviolet spectral region (200–300 nm) are relatively lacking. Here, we report an appealing deep-trap ultraviolet storage phosphor, ScBO<sub>3</sub>:Bi<sup>3+</sup>, which exhibits an ultra-narrowband light emission centered at 299 nm with a full width at half maximum (FWHM) of 0.21 eV and excellent X-ray energy storage capabilities. When persistently stimulated by longer-wavelength white/NIR light or heated at elevated temperatures, ScBO<sub>3</sub>:Bi<sup>3+</sup> phosphor exhibits intense and long-lasting ultraviolet luminescence due to the interplay between defect levels and external stimulus, while the natural decay in the dark at room temperature is extremely weak after X-ray irradiation. The impact of the spectral distribution and illuminance of ambient light and ambient temperature on ultraviolet light emission has been studied by comprehensive experimental and theoretical investigations, which elucidate that both O vacancy and Sc interstitial serve as deep electron traps for enhanced and prolonged ultraviolet luminescence upon continuous optical or thermal stimulation. Based on the unique spectral features and trap distribution in ScBO<sub>3</sub>:Bi<sup>3+</sup> phosphor, controllable optical information read-out is demonstrated via external light or heat manipulation, highlighting the great potential of ScBO<sub>3</sub>:Bi<sup>3+</sup> phosphor for advanced optical storage application in bright environments.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatio-temporal breather dynamics in microcomb soliton crystals 微梳状孤子晶体中的时空呼吸动力学
Q1 OPTICS Pub Date : 2024-09-12 DOI: 10.1038/s41377-024-01573-4
Futai Hu, Abhinav Kumar Vinod, Wenting Wang, Hsiao-Hsuan Chin, James F. McMillan, Ziyu Zhan, Yuan Meng, Mali Gong, Chee Wei Wong

Solitons, the distinct balance between nonlinearity and dispersion, provide a route toward ultrafast electromagnetic pulse shaping, high-harmonic generation, real-time image processing, and RF photonic communications. Here we uniquely explore and observe the spatio-temporal breather dynamics of optical soliton crystals in frequency microcombs, examining spatial breathers, chaos transitions, and dynamical deterministic switching – in nonlinear measurements and theory. To understand the breather solitons, we describe their dynamical routes and two example transitional maps of the ensemble spatial breathers, with and without chaos initiation. We elucidate the physical mechanisms of the breather dynamics in the soliton crystal microcombs, in the interaction plane limit cycles and in the domain-wall understanding with parity symmetry breaking from third-order dispersion. We present maps of the accessible nonlinear regions, the breather frequency dependences on third-order dispersion and avoided-mode crossing strengths, and the transition between the collective breather spatio-temporal states. Our range of measurements matches well with our first-principles theory and nonlinear modeling. To image these soliton ensembles and their breathers, we further constructed panoramic temporal imaging for simultaneous fast- and slow-axis two-dimensional mapping of the breathers. In the phase-differential sampling, we present two-dimensional evolution maps of soliton crystal breathers, including with defects, in both stable breathers and breathers with drift. Our fundamental studies contribute to the understanding of nonlinear dynamics in soliton crystal complexes, their spatio-temporal dependences, and their stability-existence zones.

孤子是非线性和色散之间的独特平衡,为超快电磁脉冲整形、高频产生、实时图像处理和射频光子通信提供了一条途径。在这里,我们独特地探索和观察了频率微蜂窝中光学孤子晶体的时空呼吸动力学,研究了非线性测量和理论中的空间呼吸、混沌转换和动态确定性开关。为了理解喘息孤子,我们描述了它们的动力学路径,以及有混沌起始和无混沌起始的集合空间喘息的两个示例过渡图。我们阐明了呼吸动力学在孤子晶体微梳理、相互作用平面极限循环和从三阶色散打破奇偶对称性的域壁理解中的物理机制。我们展示了可进入的非线性区域图、呼吸频率与三阶色散和避免模式交叉强度的相关性,以及集体呼吸时空状态之间的转换。我们的测量范围与第一原理理论和非线性建模非常吻合。为了对这些孤子集合及其呼吸器进行成像,我们进一步构建了全景时空成像,以同时对呼吸器进行快轴和慢轴二维映射。在相位差采样中,我们展示了孤子晶体呼吸器的二维演化图,包括有缺陷的稳定呼吸器和有漂移的呼吸器。我们的基础研究有助于理解孤子晶体复合体的非线性动力学、其时空依赖性及其稳定存在区。
{"title":"Spatio-temporal breather dynamics in microcomb soliton crystals","authors":"Futai Hu, Abhinav Kumar Vinod, Wenting Wang, Hsiao-Hsuan Chin, James F. McMillan, Ziyu Zhan, Yuan Meng, Mali Gong, Chee Wei Wong","doi":"10.1038/s41377-024-01573-4","DOIUrl":"https://doi.org/10.1038/s41377-024-01573-4","url":null,"abstract":"<p>Solitons, the distinct balance between nonlinearity and dispersion, provide a route toward ultrafast electromagnetic pulse shaping, high-harmonic generation, real-time image processing, and RF photonic communications. Here we uniquely explore and observe the spatio-temporal breather dynamics of optical soliton crystals in frequency microcombs, examining spatial breathers, chaos transitions, and dynamical deterministic switching – in nonlinear measurements and theory. To understand the breather solitons, we describe their dynamical routes and two example transitional maps of the ensemble spatial breathers, with and without chaos initiation. We elucidate the physical mechanisms of the breather dynamics in the soliton crystal microcombs, in the interaction plane limit cycles and in the domain-wall understanding with parity symmetry breaking from third-order dispersion. We present maps of the accessible nonlinear regions, the breather frequency dependences on third-order dispersion and avoided-mode crossing strengths, and the transition between the collective breather spatio-temporal states. Our range of measurements matches well with our first-principles theory and nonlinear modeling. To image these soliton ensembles and their breathers, we further constructed panoramic temporal imaging for simultaneous fast- and slow-axis two-dimensional mapping of the breathers. In the phase-differential sampling, we present two-dimensional evolution maps of soliton crystal breathers, including with defects, in both stable breathers and breathers with drift. Our fundamental studies contribute to the understanding of nonlinear dynamics in soliton crystal complexes, their spatio-temporal dependences, and their stability-existence zones.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simple and rapid simultaneous measurement strategy for optical rotatory dispersion and circular dichroism 简单快速的光学旋转色散和圆二色性同步测量策略
Q1 OPTICS Pub Date : 2024-09-11 DOI: 10.1038/s41377-024-01595-y
Junjie Du

A simple cavity-based technology capable of simultaneously measuring optical rotary dispersion and circular dichroism within milliseconds offers ultra-high sensitivity and unprecedented spectral resolution. This advancement holds significant potential for various biochemical applications, including drug development, clinical diagnosis, and food science and safety.

一种基于腔体的简单技术能够在几毫秒内同时测量光学旋转色散和圆二色性,具有超高的灵敏度和前所未有的光谱分辨率。这一进步为包括药物开发、临床诊断以及食品科学与安全在内的各种生化应用带来了巨大潜力。
{"title":"A simple and rapid simultaneous measurement strategy for optical rotatory dispersion and circular dichroism","authors":"Junjie Du","doi":"10.1038/s41377-024-01595-y","DOIUrl":"https://doi.org/10.1038/s41377-024-01595-y","url":null,"abstract":"<p>A simple cavity-based technology capable of simultaneously measuring optical rotary dispersion and circular dichroism within milliseconds offers ultra-high sensitivity and unprecedented spectral resolution. This advancement holds significant potential for various biochemical applications, including drug development, clinical diagnosis, and food science and safety.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coulomb focusing in attosecond angular streaking 阿秒角条纹中的库仑聚焦
Q1 OPTICS Pub Date : 2024-09-11 DOI: 10.1038/s41377-024-01600-4
Xiaokai Li, Xiwang Liu, Chuncheng Wang, Shuai Ben, Shengpeng Zhou, Yizhang Yang, Xiaohong Song, Jing Chen, Weifeng Yang, Dajun Ding

Angular streaking technique employs a close-to-circularly polarized laser pulse to build a mapping between the instant of maximum ionization and the most probable emission angle in the photoelectron momentum distribution, thereby enabling the probe of laser-induced electron dynamics in atoms and molecules with attosecond temporal resolution. Here, through the jointed experimental observations and improved Coulomb-corrected strong-field approximation statistical simulations, we identify that electrons emitted at different initial ionization times converge to the most probable emission angle due to the previously-unexpected Coulomb focusing triggered by the nonadiabatic laser-induced electron tunneling. We reveal that the Coulomb focusing induces the observed nonintuitive energy-dependent trend in the angular streaking measurements on the nonadiabatic tunneling, and that tunneling dynamics under the classically forbidden barrier can leave fingerprints on the resulting signals. Our findings have significant implications for the decoding of the intricate tunneling dynamics with attosecond angular streaking.

角度条纹技术利用近圆偏振激光脉冲,在光电子动量分布中建立最大电离瞬间与最可能发射角之间的映射关系,从而实现对原子和分子中激光诱导电子动力学的阿秒级时间分辨率探测。在这里,通过联合实验观测和改进的库仑校正强场近似统计模拟,我们发现在不同初始电离时间发射的电子趋近于最可能的发射角,这是由于非绝热激光诱导的电子隧道触发了之前未曾预料到的库仑聚焦。我们揭示了库仑聚焦在非绝热隧穿的角度条纹测量中诱发了所观察到的非直观的能量依赖趋势,并且在经典禁止势垒下的隧穿动力学会在所产生的信号上留下指纹。我们的发现对于解码具有阿秒角条纹的复杂隧道动力学具有重要意义。
{"title":"Coulomb focusing in attosecond angular streaking","authors":"Xiaokai Li, Xiwang Liu, Chuncheng Wang, Shuai Ben, Shengpeng Zhou, Yizhang Yang, Xiaohong Song, Jing Chen, Weifeng Yang, Dajun Ding","doi":"10.1038/s41377-024-01600-4","DOIUrl":"https://doi.org/10.1038/s41377-024-01600-4","url":null,"abstract":"<p>Angular streaking technique employs a close-to-circularly polarized laser pulse to build a mapping between the instant of maximum ionization and the most probable emission angle in the photoelectron momentum distribution, thereby enabling the probe of laser-induced electron dynamics in atoms and molecules with attosecond temporal resolution. Here, through the jointed experimental observations and improved Coulomb-corrected strong-field approximation statistical simulations, we identify that electrons emitted at different initial ionization times converge to the most probable emission angle due to the previously-unexpected Coulomb focusing triggered by the nonadiabatic laser-induced electron tunneling. We reveal that the Coulomb focusing induces the observed nonintuitive energy-dependent trend in the angular streaking measurements on the nonadiabatic tunneling, and that tunneling dynamics under the classically forbidden barrier can leave fingerprints on the resulting signals. Our findings have significant implications for the decoding of the intricate tunneling dynamics with attosecond angular streaking.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning as a highly efficient tool for digital signal processing design 深度学习是数字信号处理设计的高效工具
Q1 OPTICS Pub Date : 2024-09-11 DOI: 10.1038/s41377-024-01599-8
Andrey Pryamikov

The backpropagation algorithm, the most widely used algorithm for training artificial neural networks, can be effectively applied to the development of digital signal processing schemes in the optical fiber transmission systems. Digital signal processing as a deep learning framework can lead to a new highly efficient paradigm for cost-effective digital signal processing designes with low complexity.

反向传播算法是人工神经网络训练中应用最广泛的算法,可有效地应用于光纤传输系统中数字信号处理方案的开发。数字信号处理作为一种深度学习框架,可以为低复杂度、高性价比的数字信号处理设计带来一种新的高效范式。
{"title":"Deep learning as a highly efficient tool for digital signal processing design","authors":"Andrey Pryamikov","doi":"10.1038/s41377-024-01599-8","DOIUrl":"https://doi.org/10.1038/s41377-024-01599-8","url":null,"abstract":"<p>The backpropagation algorithm, the most widely used algorithm for training artificial neural networks, can be effectively applied to the development of digital signal processing schemes in the optical fiber transmission systems. Digital signal processing as a deep learning framework can lead to a new highly efficient paradigm for cost-effective digital signal processing designes with low complexity.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High efficiency and dynamic modulation of nonlinear metasurfaces 非线性元表面的高效率和动态调制
Q1 OPTICS Pub Date : 2024-09-10 DOI: 10.1038/s41377-024-01592-1
Ruizhe Zhao, Lingling Huang

Metasurfaces have facilitated numerous innovative applications in the scope of nonlinear optics. However, dynamically tuning the nonlinear response at the pixel level is very challenging. Recent work proposed a novel method to electrically manipulate the local amplitude and phase of third-harmonics generation (THG) by integrating the giant nonlinear responses resulting from intersubband transitions of multiple quantum wells (MQW) with plasmonic nano-resonator. The demonstrated method may pave the way to realize nonlinear optical elements with versatile functionalities by electrically tuning and promoting the advancements of innovative applications such as lidar, 3D displays, optical encryption, optical computing, and so on.

元表面为非线性光学领域的众多创新应用提供了便利。然而,在像素级动态调整非线性响应非常具有挑战性。最近的研究提出了一种新方法,通过将多量子阱(MQW)带间跃迁产生的巨大非线性响应与等离子纳米谐振器结合起来,对三次谐波产生(THG)的局部振幅和相位进行电子操控。所展示的方法可为通过电调谐实现具有多种功能的非线性光学元件铺平道路,并促进激光雷达、三维显示、光加密、光计算等创新应用的发展。
{"title":"High efficiency and dynamic modulation of nonlinear metasurfaces","authors":"Ruizhe Zhao, Lingling Huang","doi":"10.1038/s41377-024-01592-1","DOIUrl":"https://doi.org/10.1038/s41377-024-01592-1","url":null,"abstract":"<p>Metasurfaces have facilitated numerous innovative applications in the scope of nonlinear optics. However, dynamically tuning the nonlinear response at the pixel level is very challenging. Recent work proposed a novel method to electrically manipulate the local amplitude and phase of third-harmonics generation (THG) by integrating the giant nonlinear responses resulting from intersubband transitions of multiple quantum wells (MQW) with plasmonic nano-resonator. The demonstrated method may pave the way to realize nonlinear optical elements with versatile functionalities by electrically tuning and promoting the advancements of innovative applications such as lidar, 3D displays, optical encryption, optical computing, and so on.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Light-Science & Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1