Sensitive Organic Photodetectors With Spectral Response up to 1.3 µm Using a Quinoidal Molecular Semiconductor

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-02-15 DOI:10.1002/adma.202310811
Bingyan Yin, Xia Zhou, Yuyang Li, Gangjian Hu, Wenkui Wei, Mingqun Yang, Seonghun Jeong, Wanyuan Deng, Baoqi Wu, Yunhao Cao, Bo Huang, Langheng Pan, Xiaoru Yang, Zhenyu Fu, Yanjun Fang, Liang Shen, Changduk Yang, Hongbin Wu, Linfeng Lan, Fei Huang, Yong Cao, Chunhui Duan
{"title":"Sensitive Organic Photodetectors With Spectral Response up to 1.3 µm Using a Quinoidal Molecular Semiconductor","authors":"Bingyan Yin,&nbsp;Xia Zhou,&nbsp;Yuyang Li,&nbsp;Gangjian Hu,&nbsp;Wenkui Wei,&nbsp;Mingqun Yang,&nbsp;Seonghun Jeong,&nbsp;Wanyuan Deng,&nbsp;Baoqi Wu,&nbsp;Yunhao Cao,&nbsp;Bo Huang,&nbsp;Langheng Pan,&nbsp;Xiaoru Yang,&nbsp;Zhenyu Fu,&nbsp;Yanjun Fang,&nbsp;Liang Shen,&nbsp;Changduk Yang,&nbsp;Hongbin Wu,&nbsp;Linfeng Lan,&nbsp;Fei Huang,&nbsp;Yong Cao,&nbsp;Chunhui Duan","doi":"10.1002/adma.202310811","DOIUrl":null,"url":null,"abstract":"<p>Detecting short-wavelength infrared (SWIR) light has underpinned several emerging technologies. However, the development of highly sensitive organic photodetectors (OPDs) operating in the SWIR region is hindered by their poor external quantum efficiencies (EQEs) and high dark currents. Herein, the development of high-sensitivity SWIR-OPDs with an efficient photoelectric response extending up to 1.3 µm is reported. These OPDs utilize a new ultralow-bandgap molecular semiconductor featuring a quinoidal tricyclic electron-deficient central unit and multiple non-covalent conformation locks. The SWIR-OPD achieves an unprecedented EQE of 26% under zero bias and an even more impressive EQE of up to 41% under a –4 V bias at 1.10 µm, effectively pushing the detection limit of silicon photodetectors. Additionally, the low energetic disorder and trap density in the active layer lead to significant suppression of thermal-generation carriers and dark current, resulting in excellent detectivity (<i>D</i><sub>sh</sub><sup>*</sup>) exceeding 10<sup>13</sup> Jones from 0.50 to 1.21 µm and surpassing 10<sup>12</sup> Jones even at 1.30 µm under zero bias, marking the highest achievements for OPDs beyond the silicon limit to date. Validation with photoplethysmography measurements, a spectrometer prototype in the 0.35–1.25 µm range, and image capture under 1.20 µm irradiation demonstrate the extensive applications of this SWIR-OPD.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 19","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202310811","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting short-wavelength infrared (SWIR) light has underpinned several emerging technologies. However, the development of highly sensitive organic photodetectors (OPDs) operating in the SWIR region is hindered by their poor external quantum efficiencies (EQEs) and high dark currents. Herein, the development of high-sensitivity SWIR-OPDs with an efficient photoelectric response extending up to 1.3 µm is reported. These OPDs utilize a new ultralow-bandgap molecular semiconductor featuring a quinoidal tricyclic electron-deficient central unit and multiple non-covalent conformation locks. The SWIR-OPD achieves an unprecedented EQE of 26% under zero bias and an even more impressive EQE of up to 41% under a –4 V bias at 1.10 µm, effectively pushing the detection limit of silicon photodetectors. Additionally, the low energetic disorder and trap density in the active layer lead to significant suppression of thermal-generation carriers and dark current, resulting in excellent detectivity (Dsh*) exceeding 1013 Jones from 0.50 to 1.21 µm and surpassing 1012 Jones even at 1.30 µm under zero bias, marking the highest achievements for OPDs beyond the silicon limit to date. Validation with photoplethysmography measurements, a spectrometer prototype in the 0.35–1.25 µm range, and image capture under 1.20 µm irradiation demonstrate the extensive applications of this SWIR-OPD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 Quinoidal 分子半导体的灵敏有机光电探测器,光谱响应可达 1.3 μm。
检测短波红外光(SWIR)是多项新兴技术的基础。然而,在 SWIR 区域工作的高灵敏度有机光电探测器(OPD)却因其较差的外部量子效率(EQE)和较高的暗电流而发展受阻。在此,我们报告了高灵敏度 SWIR-OPD 的开发情况,其高效光电响应可延伸至 1.3 μm。这些光致发光器件采用了一种新型超低带隙分子半导体,其特点是具有三环缺电子中心单元和多个非共价构象锁。在零偏压条件下,SWIR-OPD 实现了前所未有的 26% EQE,而在 1.10 μm 的 -4 V 偏置条件下,EQE 甚至高达 41%,有效地突破了硅光电探测器的探测极限。此外,有源层中的低能量无序和陷阱密度显著抑制了热生成载流子和暗电流,从而使 0.50 至 1.21 μm 波长范围内的出色检测率(Dsh * )超过 1013 琼斯,在零偏压条件下,1.30 μm 波长范围内的检测率甚至超过 1012 琼斯,这标志着迄今为止超越硅极限的 OPD 取得的最高成就。通过光血压测量、0.35-1.25 μm 范围内的光谱仪原型以及 1.20 μm 照射下的图像捕捉进行验证,证明了这种 SWIR-OPD 的广泛应用。本文受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Red Phosphorescence at Elevated Temperatures Enabled by Dexter Energy Transfer in Polyaromatic Hydrocarbon-Xanthone Systems Epitaxial Ferroelectric Hexagonal Boron Nitride Grown on Graphene CuPt Alloy Enabling the Tandem Catalysis for Reduction of HCOOH and NO3− to Urea at High Current Density Giant and Anisotropic Enhancement of Spin-Charge Conversion in Graphene-Based Quantum System High-Entropy 1T-Phase Quantum Sheets of Transition-Metal Disulfides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1