An ensemble-based approach to estimate confidence of predicted protein-ligand binding affinity values.

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Molecular Informatics Pub Date : 2024-04-01 Epub Date: 2024-02-15 DOI:10.1002/minf.202300292
Milad Rayka, Morteza Mirzaei, Ali Mohammad Latifi
{"title":"An ensemble-based approach to estimate confidence of predicted protein-ligand binding affinity values.","authors":"Milad Rayka, Morteza Mirzaei, Ali Mohammad Latifi","doi":"10.1002/minf.202300292","DOIUrl":null,"url":null,"abstract":"<p><p>When designing a machine learning-based scoring function, we access a limited number of protein-ligand complexes with experimentally determined binding affinity values, representing only a fraction of all possible protein-ligand complexes. Consequently, it is crucial to report a measure of confidence and quantify the uncertainty in the model's predictions during test time. Here, we adopt the conformal prediction technique to evaluate the confidence of a prediction for each member of the core set of the CASF 2016 benchmark. The conformal prediction technique requires a diverse ensemble of predictors for uncertainty estimation. To this end, we introduce ENS-Score as an ensemble predictor, which includes 30 models with different protein-ligand representation approaches and achieves Pearson's correlation of 0.842 on the core set of the CASF 2016 benchmark. Also, we comprehensively investigate the residual error of each data point to assess the normality behavior of the distribution of the residual errors and their correlation to the structural features of the ligands, such as hydrophobic interactions and halogen bonding. In the end, we provide a local host web application to facilitate the usage of ENS-Score. All codes to repeat results are provided at https://github.com/miladrayka/ENS_Score.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300292","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

When designing a machine learning-based scoring function, we access a limited number of protein-ligand complexes with experimentally determined binding affinity values, representing only a fraction of all possible protein-ligand complexes. Consequently, it is crucial to report a measure of confidence and quantify the uncertainty in the model's predictions during test time. Here, we adopt the conformal prediction technique to evaluate the confidence of a prediction for each member of the core set of the CASF 2016 benchmark. The conformal prediction technique requires a diverse ensemble of predictors for uncertainty estimation. To this end, we introduce ENS-Score as an ensemble predictor, which includes 30 models with different protein-ligand representation approaches and achieves Pearson's correlation of 0.842 on the core set of the CASF 2016 benchmark. Also, we comprehensively investigate the residual error of each data point to assess the normality behavior of the distribution of the residual errors and their correlation to the structural features of the ligands, such as hydrophobic interactions and halogen bonding. In the end, we provide a local host web application to facilitate the usage of ENS-Score. All codes to repeat results are provided at https://github.com/miladrayka/ENS_Score.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于集合的蛋白质配体结合亲和力预测值置信度估算方法。
在设计基于机器学习的评分函数时,我们只能获得有限数量的具有实验确定的结合亲和力值的蛋白质配体复合物,而这些复合物仅代表所有可能的蛋白质配体复合物的一小部分。因此,在测试期间报告模型预测的置信度和量化不确定性至关重要。在此,我们采用保形预测技术来评估 CASF 2016 基准核心集每个成员的预测置信度。共形预测技术需要多样化的预测集合来进行不确定性估计。为此,我们引入了 ENS-Score 作为集合预测器,其中包括 30 个采用不同蛋白质配体表示方法的模型,并在 CASF 2016 基准的核心集上实现了 0.842 的皮尔逊相关性。此外,我们还全面研究了每个数据点的残余误差,以评估残余误差分布的正态性及其与配体结构特征(如疏水相互作用和卤素键)的相关性。最后,我们提供了一个本地主机网络应用程序,以方便使用 ENS-Score。重复结果的所有代码均可在 https://github.com/miladrayka/ENS_Score 网站上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
期刊最新文献
Cover Picture: (Mol. Inf. 9/2024) The freedom space - a new set of commercially available molecules for hit discovery. Cover Picture: (Mol. Inf. 8/2024) Chemography-guided analysis of a reaction path network for ethylene hydrogenation with a model Wilkinson's catalyst. Sulfotransferase-mediated phase II drug metabolism prediction of substrates and sites using accessibility and reactivity-based algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1