{"title":"MRM-BERT: a novel deep neural network predictor of multiple RNA modifications by fusing BERT representation and sequence features.","authors":"Linshu Wang, Yuan Zhou","doi":"10.1080/15476286.2024.2315384","DOIUrl":null,"url":null,"abstract":"<p><p>RNA modifications play crucial roles in various biological processes and diseases. Accurate prediction of RNA modification sites is essential for understanding their functions. In this study, we propose a hybrid approach that fuses a pre-trained sequence representation with various sequence features to predict multiple types of RNA modifications in one combined prediction framework. We developed MRM-BERT, a deep learning method that combined the pre-trained DNABERT deep sequence representation module and the convolutional neural network (CNN) exploiting four traditional sequence feature encodings to improve the prediction performance. MRM-BERT was evaluated on multiple datasets of 12 commonly occurring RNA modifications, including m<sup>6</sup>A, m<sup>5</sup>C, m<sup>1</sup>A and so on. The results demonstrate that our hybrid model outperforms other models in terms of area under receiver operating characteristic curve (AUC) for all 12 types of RNA modifications. MRM-BERT is available as an online tool (http://117.122.208.21:8501) or source code (https://github.com/abhhba999/MRM-BERT), which allows users to predict RNA modification sites and visualize the results. Overall, our study provides an effective and efficient approach to predict multiple RNA modifications, contributing to the understanding of RNA biology and the development of therapeutic strategies.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-10"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877979/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2024.2315384","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA modifications play crucial roles in various biological processes and diseases. Accurate prediction of RNA modification sites is essential for understanding their functions. In this study, we propose a hybrid approach that fuses a pre-trained sequence representation with various sequence features to predict multiple types of RNA modifications in one combined prediction framework. We developed MRM-BERT, a deep learning method that combined the pre-trained DNABERT deep sequence representation module and the convolutional neural network (CNN) exploiting four traditional sequence feature encodings to improve the prediction performance. MRM-BERT was evaluated on multiple datasets of 12 commonly occurring RNA modifications, including m6A, m5C, m1A and so on. The results demonstrate that our hybrid model outperforms other models in terms of area under receiver operating characteristic curve (AUC) for all 12 types of RNA modifications. MRM-BERT is available as an online tool (http://117.122.208.21:8501) or source code (https://github.com/abhhba999/MRM-BERT), which allows users to predict RNA modification sites and visualize the results. Overall, our study provides an effective and efficient approach to predict multiple RNA modifications, contributing to the understanding of RNA biology and the development of therapeutic strategies.
期刊介绍:
RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research.
RNA Biology brings together a multidisciplinary community of scientists working in the areas of:
Transcription and splicing
Post-transcriptional regulation of gene expression
Non-coding RNAs
RNA localization
Translation and catalysis by RNA
Structural biology
Bioinformatics
RNA in disease and therapy