首页 > 最新文献

RNA Biology最新文献

英文 中文
The regulatory roles of RNA-binding proteins in the tumour immune microenvironment of gastrointestinal malignancies. rna结合蛋白在胃肠道恶性肿瘤肿瘤免疫微环境中的调控作用。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2024-12-24 DOI: 10.1080/15476286.2024.2440683
Dongqi Li, Xiangyu Chu, Weikang Liu, Yongsu Ma, Xiaodong Tian, Yinmo Yang

The crosstalk between the tumour immune microenvironment (TIME) and tumour cells promote immune evasion and resistance to immunotherapy in gastrointestinal (GI) tumours. Post-transcriptional regulation of genes is pivotal to GI tumours progression, and RNA-binding proteins (RBPs) serve as key regulators via their RNA-binding domains. RBPs may exhibit either anti-tumour or pro-tumour functions by influencing the TIME through the modulation of mRNAs and non-coding RNAs expression, as well as post-transcriptional modifications, primarily N6-methyladenosine (m6A). Aberrant regulation of RBPs, such as HuR and YBX1, typically enhances tumour immune escape and impacts prognosis of GI tumour patients. Further, while targeting RBPs offers a promising strategy for improving immunotherapy in GI cancers, the mechanisms by which RBPs regulate the TIME in these tumours remain poorly understood, and the therapeutic application is still in its early stages. This review summarizes current advances in exploring the roles of RBPs in regulating genes expression and their effect on the TIME of GI tumours, then providing theoretical insights for RBP-targeted cancer therapies.

肿瘤免疫微环境(TIME)和肿瘤细胞之间的串扰促进了胃肠道(GI)肿瘤的免疫逃避和免疫治疗抵抗。基因的转录后调控是胃肠道肿瘤进展的关键,rna结合蛋白(rbp)通过其rna结合结构域发挥关键调控作用。rbp可能通过调节mrna和非编码rna的表达以及转录后修饰(主要是n6 -甲基腺苷(m6A))来影响TIME,从而表现出抗肿瘤或促肿瘤的功能。rbp如HuR和YBX1的异常调节通常会促进肿瘤免疫逃逸,影响胃肠道肿瘤患者的预后。此外,虽然靶向rbp为改善胃肠道癌症的免疫治疗提供了一种有希望的策略,但rbp在这些肿瘤中调节时间的机制仍然知之甚少,治疗应用仍处于早期阶段。本文综述了rbp在胃肠道肿瘤基因表达调控中的作用及其对肿瘤时间的影响,为rbp靶向肿瘤治疗提供理论依据。
{"title":"The regulatory roles of RNA-binding proteins in the tumour immune microenvironment of gastrointestinal malignancies.","authors":"Dongqi Li, Xiangyu Chu, Weikang Liu, Yongsu Ma, Xiaodong Tian, Yinmo Yang","doi":"10.1080/15476286.2024.2440683","DOIUrl":"10.1080/15476286.2024.2440683","url":null,"abstract":"<p><p>The crosstalk between the tumour immune microenvironment (TIME) and tumour cells promote immune evasion and resistance to immunotherapy in gastrointestinal (GI) tumours. Post-transcriptional regulation of genes is pivotal to GI tumours progression, and RNA-binding proteins (RBPs) serve as key regulators via their RNA-binding domains. RBPs may exhibit either anti-tumour or pro-tumour functions by influencing the TIME through the modulation of mRNAs and non-coding RNAs expression, as well as post-transcriptional modifications, primarily N6-methyladenosine (m<sup>6</sup>A). Aberrant regulation of RBPs, such as HuR and YBX1, typically enhances tumour immune escape and impacts prognosis of GI tumour patients. Further, while targeting RBPs offers a promising strategy for improving immunotherapy in GI cancers, the mechanisms by which RBPs regulate the TIME in these tumours remain poorly understood, and the therapeutic application is still in its early stages. This review summarizes current advances in exploring the roles of RBPs in regulating genes expression and their effect on the TIME of GI tumours, then providing theoretical insights for RBP-targeted cancer therapies.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"22 1","pages":"1-14"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
tRNA modifications: greasing the wheels of translation and beyond. tRNA修饰:润滑翻译的车轮和超越。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2024-12-26 DOI: 10.1080/15476286.2024.2442856
Minjie Zhang, Zhipeng Lu

Transfer RNA (tRNA) is one of the most abundant RNA types in cells, acting as an adaptor to bridge the genetic information in mRNAs with the amino acid sequence in proteins. Both tRNAs and small fragments processed from them play many nonconventional roles in addition to translation. tRNA molecules undergo various types of chemical modifications to ensure the accuracy and efficiency of translation and regulate their diverse functions beyond translation. In this review, we discuss the biogenesis and molecular mechanisms of tRNA modifications, including major tRNA modifications, writer enzymes, and their dynamic regulation. We also summarize the state-of-the-art technologies for measuring tRNA modification, with a particular focus on 2'-O-methylation (Nm), and discuss their limitations and remaining challenges. Finally, we highlight recent discoveries linking dysregulation of tRNA modifications with genetic diseases.

tRNA (Transfer RNA)是细胞中最丰富的RNA类型之一,是mrna遗传信息与蛋白质氨基酸序列之间的桥梁。除了翻译外,trna和由它们加工而成的小片段还发挥着许多非常规的作用。tRNA分子经过各种类型的化学修饰,以保证翻译的准确性和效率,并调节其翻译之外的多种功能。本文综述了tRNA修饰的生物发生和分子机制,包括主要的tRNA修饰、writer酶及其动态调控。我们还总结了测量tRNA修饰的最新技术,特别关注2'- o -甲基化(Nm),并讨论了它们的局限性和仍然存在的挑战。最后,我们强调了最近发现的tRNA修饰失调与遗传疾病的联系。
{"title":"tRNA modifications: greasing the wheels of translation and beyond.","authors":"Minjie Zhang, Zhipeng Lu","doi":"10.1080/15476286.2024.2442856","DOIUrl":"https://doi.org/10.1080/15476286.2024.2442856","url":null,"abstract":"<p><p>Transfer RNA (tRNA) is one of the most abundant RNA types in cells, acting as an adaptor to bridge the genetic information in mRNAs with the amino acid sequence in proteins. Both tRNAs and small fragments processed from them play many nonconventional roles in addition to translation. tRNA molecules undergo various types of chemical modifications to ensure the accuracy and efficiency of translation and regulate their diverse functions beyond translation. In this review, we discuss the biogenesis and molecular mechanisms of tRNA modifications, including major tRNA modifications, writer enzymes, and their dynamic regulation. We also summarize the state-of-the-art technologies for measuring tRNA modification, with a particular focus on 2'-O-methylation (Nm), and discuss their limitations and remaining challenges. Finally, we highlight recent discoveries linking dysregulation of tRNA modifications with genetic diseases.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"22 1","pages":"1-25"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142897124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defining the methanogenic SECIS element in vivo by targeted mutagenesis.
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-03-02 DOI: 10.1080/15476286.2025.2472448
Nils Peiter, Anna Einert, Pauline Just, Frida Jannasch, Marija Najdovska, Michael Rother

In all domains of life, Archaea, Eukarya and Bacteria, the unusual amino acid selenocysteine (Sec) is co-translationally incorporated into proteins by recoding a UGA stop codon to a sense codon. A secondary structure on the mRNA, the selenocysteine insertion sequence (SECIS), is required, but its position, secondary structure and binding partner(s) are not conserved across the tree of life. Thus far, the nature of archaeal SECIS elements has been derived mainly from sequence analyses. A recently developed in vivo reporter system was used to study the structure-function relationships of SECIS elements in Methanococcus maripaludis. Through targeted mutagenesis, we defined the minimal functional SECIS element, the parts of the SECIS where structure and not the identity of the bases are relevant for function, and identified two conserved -and invariant- adenines that are most likely to interact with the other factor(s) of the Sec recoding machinery. Finally, we demonstrated the functionality of SECIS elements in the 5`-untranslated region of the mRNA and identified a potential mechanism of SECIS repositioning in the vicinity of the UGA for efficient selenocysteine insertion.

{"title":"Defining the methanogenic SECIS element <i>in vivo</i> by targeted mutagenesis.","authors":"Nils Peiter, Anna Einert, Pauline Just, Frida Jannasch, Marija Najdovska, Michael Rother","doi":"10.1080/15476286.2025.2472448","DOIUrl":"10.1080/15476286.2025.2472448","url":null,"abstract":"<p><p>In all domains of life, Archaea, Eukarya and Bacteria, the unusual amino acid selenocysteine (Sec) is co-translationally incorporated into proteins by recoding a UGA stop codon to a sense codon. A secondary structure on the mRNA, the selenocysteine insertion sequence (SECIS), is required, but its position, secondary structure and binding partner(s) are not conserved across the tree of life. Thus far, the nature of archaeal SECIS elements has been derived mainly from sequence analyses. A recently developed <i>in vivo</i> reporter system was used to study the structure-function relationships of SECIS elements in <i>Methanococcus maripaludis</i>. Through targeted mutagenesis, we defined the minimal functional SECIS element, the parts of the SECIS where structure and not the identity of the bases are relevant for function, and identified two conserved -and invariant- adenines that are most likely to interact with the other factor(s) of the Sec recoding machinery. Finally, we demonstrated the functionality of SECIS elements in the 5`-untranslated region of the mRNA and identified a potential mechanism of SECIS repositioning in the vicinity of the UGA for efficient selenocysteine insertion.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-13"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143503658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the immune-related targetome of miR-155-5p by integrating time-resolved RNA patterns into miRNA target prediction. 通过将时间分辨RNA模式整合到miRNA靶标预测中,扩大miR-155-5p的免疫相关靶标组。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-01-11 DOI: 10.1080/15476286.2025.2449775
Martin Hart, Caroline Diener, Stefanie Rheinheimer, Tim Kehl, Andreas Keller, Hans-Peter Lenhof, Eckart Meese

The lack of a sufficient number of validated miRNA targets severely hampers the understanding of their biological function. Even for the well-studied miR-155-5p, there are only 239 experimentally validated targets out of 42,554 predicted targets. For a more complete assessment of the immune-related miR-155 targetome, we used an inverse correlation of time-resolved mRNA profiles and miR-155-5p expression of early CD4+ T cell activation to predict immune-related target genes. Using a high-throughput miRNA interaction reporter (HiTmIR) assay we examined 90 target genes and confirmed 80 genes as direct targets of miR-155-5p. Our study increases the current number of verified miR-155-5p targets approximately threefold and exemplifies a method for verifying miRNA targetomes as a prerequisite for the analysis of miRNA-regulated cellular networks.

缺乏足够数量的经过验证的miRNA靶标严重阻碍了对其生物学功能的理解。即使对于研究充分的miR-155-5p,在42554个预测靶标中,也只有239个实验验证的靶标。为了更完整地评估免疫相关的miR-155靶组,我们使用了时间分辨mRNA谱和早期CD4+ T细胞活化的miR-155-5p表达的负相关来预测免疫相关靶基因。使用高通量miRNA相互作用报告基因(HiTmIR)检测,我们检测了90个靶基因,并确认了80个基因是miR-155-5p的直接靶点。我们的研究将目前验证的miR-155-5p靶标数量增加了大约三倍,并举例说明了一种验证miRNA靶组的方法,作为分析miRNA调控的细胞网络的先决条件。
{"title":"Expanding the immune-related targetome of miR-155-5p by integrating time-resolved RNA patterns into miRNA target prediction.","authors":"Martin Hart, Caroline Diener, Stefanie Rheinheimer, Tim Kehl, Andreas Keller, Hans-Peter Lenhof, Eckart Meese","doi":"10.1080/15476286.2025.2449775","DOIUrl":"10.1080/15476286.2025.2449775","url":null,"abstract":"<p><p>The lack of a sufficient number of validated miRNA targets severely hampers the understanding of their biological function. Even for the well-studied miR-155-5p, there are only 239 experimentally validated targets out of 42,554 predicted targets. For a more complete assessment of the immune-related miR-155 targetome, we used an inverse correlation of time-resolved mRNA profiles and miR-155-5p expression of early CD4+ T cell activation to predict immune-related target genes. Using a high-throughput miRNA interaction reporter (HiTmIR) assay we examined 90 target genes and confirmed 80 genes as direct targets of miR-155-5p. Our study increases the current number of verified miR-155-5p targets approximately threefold and exemplifies a method for verifying miRNA targetomes as a prerequisite for the analysis of miRNA-regulated cellular networks.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-9"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of differentially expressed non-coding RNAs in the plasma of women with preterm birth. 早产妇女血浆中差异表达的非编码rna的鉴定。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-01-13 DOI: 10.1080/15476286.2024.2449278
Waqasuddin Khan, Samiah Kanwar, Mohammad Mohsin Mannan, Furqan Kabir, Naveed Iqbal, Mehdia Nadeem Rajab Ali, Syeda Rehana Zia, Sharmeen Mian, Fatima Aziz, Sahrish Muneer, Adil Kalam, Akram Hussain, Iqra Javed, Muhammad Farrukh Qazi, Javairia Khalid, Muhammad Imran Nisar, Fyezah Jehan

This study aimed to identify differentially expressed non-coding RNAs (ncRNAs) associated with preterm birth (PTB) and determine biological pathways being influenced in the context of PTB. We processed cell-free RNA sequencing data and identified seventeen differentially expressed (DE) ncRNAs that could be involved in the onset of PTB. Per the validation via customized RT-qPCR, the recorded variations in expressions of eleven ncRNAs were concordant with the in-silico analyses. The results of this study provide insights into the role of DE ncRNAs and their impact on pregnancy-related biological pathways that could lead to PTB. Further studies are required to elucidate the precise mechanisms by which these DE ncRNAs contribute to adverse pregnancy outcomes (APOs) and their potential as diagnostic biomarkers.

本研究旨在鉴定与早产(PTB)相关的差异表达非编码rna (ncRNAs),并确定在PTB背景下受影响的生物学途径。我们处理了无细胞RNA测序数据,并鉴定出17种可能参与PTB发病的差异表达(DE) ncRNAs。通过定制的RT-qPCR验证,记录的11种ncrna的表达变化与计算机分析一致。本研究的结果为DE ncrna的作用及其对妊娠相关生物学途径的影响提供了见解,这些途径可能导致PTB。需要进一步的研究来阐明这些DE ncrna导致不良妊娠结局(APOs)的确切机制及其作为诊断性生物标志物的潜力。
{"title":"Identification of differentially expressed non-coding RNAs in the plasma of women with preterm birth.","authors":"Waqasuddin Khan, Samiah Kanwar, Mohammad Mohsin Mannan, Furqan Kabir, Naveed Iqbal, Mehdia Nadeem Rajab Ali, Syeda Rehana Zia, Sharmeen Mian, Fatima Aziz, Sahrish Muneer, Adil Kalam, Akram Hussain, Iqra Javed, Muhammad Farrukh Qazi, Javairia Khalid, Muhammad Imran Nisar, Fyezah Jehan","doi":"10.1080/15476286.2024.2449278","DOIUrl":"10.1080/15476286.2024.2449278","url":null,"abstract":"<p><p>This study aimed to identify differentially expressed non-coding RNAs (ncRNAs) associated with preterm birth (PTB) and determine biological pathways being influenced in the context of PTB. We processed cell-free RNA sequencing data and identified seventeen differentially expressed (DE) ncRNAs that could be involved in the onset of PTB. Per the validation via customized RT-qPCR, the recorded variations in expressions of eleven ncRNAs were concordant with the <i>in-silico</i> analyses. The results of this study provide insights into the role of DE ncRNAs and their impact on pregnancy-related biological pathways that could lead to PTB. Further studies are required to elucidate the precise mechanisms by which these DE ncRNAs contribute to adverse pregnancy outcomes (APOs) and their potential as diagnostic biomarkers.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"22 1","pages":"1-8"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730358/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EIciRNAs in focus: current understanding and future perspectives. 关注eicirna:当前的理解和未来的观点。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2024-12-23 DOI: 10.1080/15476286.2024.2443876
Yan Yang, Yinchun Zhong, Liang Chen

Circular RNAs (circRNAs) are a unique class of covalently closed single-stranded RNA molecules that play diverse roles in normal physiology and pathology. Among the major types of circRNA, exon-intron circRNA (EIciRNA) distinguishes itself by its sequence composition and nuclear localization. Recent RNA-seq technologies and computational methods have facilitated the detection and characterization of EIciRNAs, with features like circRNA intron retention (CIR) and tissue-specificity being characterized. EIciRNAs have been identified to exert their functions via mechanisms such as regulating gene transcription, and the physiological relevance of EIciRNAs has been reported. Within this review, we present a summary of the current understanding of EIciRNAs, delving into their identification and molecular functions. Additionally, we emphasize factors regulating EIciRNA biogenesis and the physiological roles of EIciRNAs based on recent research. We also discuss the future challenges in EIciRNA exploration, underscoring the potential for novel functions and functional mechanisms of EIciRNAs for further investigation.

环状RNA (circRNAs)是一类独特的共价封闭单链RNA分子,在正常生理和病理中发挥着多种作用。在circRNA的主要类型中,外显子-内含子circRNA (EIciRNA)以其序列组成和核定位而闻名。最近的RNA-seq技术和计算方法促进了eicirna的检测和表征,诸如circRNA内含子保留(CIR)和组织特异性等特征被表征。已经发现EIciRNAs通过调节基因转录等机制发挥其功能,并且已经报道了EIciRNAs的生理相关性。在这篇综述中,我们总结了目前对eicirna的理解,深入研究了它们的鉴定和分子功能。此外,我们根据最近的研究重点介绍了EIciRNA生物发生的调控因子和EIciRNA的生理作用。我们还讨论了EIciRNA探索的未来挑战,强调了EIciRNA的新功能和功能机制的潜力,值得进一步研究。
{"title":"EIciRNAs in focus: current understanding and future perspectives.","authors":"Yan Yang, Yinchun Zhong, Liang Chen","doi":"10.1080/15476286.2024.2443876","DOIUrl":"10.1080/15476286.2024.2443876","url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are a unique class of covalently closed single-stranded RNA molecules that play diverse roles in normal physiology and pathology. Among the major types of circRNA, exon-intron circRNA (EIciRNA) distinguishes itself by its sequence composition and nuclear localization. Recent RNA-seq technologies and computational methods have facilitated the detection and characterization of EIciRNAs, with features like circRNA intron retention (CIR) and tissue-specificity being characterized. EIciRNAs have been identified to exert their functions via mechanisms such as regulating gene transcription, and the physiological relevance of EIciRNAs has been reported. Within this review, we present a summary of the current understanding of EIciRNAs, delving into their identification and molecular functions. Additionally, we emphasize factors regulating EIciRNA biogenesis and the physiological roles of EIciRNAs based on recent research. We also discuss the future challenges in EIciRNA exploration, underscoring the potential for novel functions and functional mechanisms of EIciRNAs for further investigation.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"22 1","pages":"1-12"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142877855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AUGcontext DB: a comprehensive catalog of the mRNA AUG initiator codon context across eukaryotes.
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-02-13 DOI: 10.1080/15476286.2025.2465196
Vincent G Osnaya, Laura Gómez-Romero, Gabriel Moreno-Hagelsieb, Greco Hernández

The mRNA translation defines the composition of the cell proteome in all forms of life and diseases. In this process, precise selection of the mRNA translation initiation site (TIS) is crucial, as it establishes the correct open reading frame for triplet decoding. We have gathered and curated all published TIS consensus context sequences. We also included the TIS consensus context from novel 538 fungal genomes available from NCBI's RefSeq database. To do so, we wrote ad hoc programs in PERL to find and extract the TIS for each annotated gene, plus ten bases upstream and three downstream. For each genome, the sequences around the TIS of each gene were obtained, and the consensus was further calculated according to the Cavener rules and by the LOGOS algorithm. We created AUGcontext DB, a portal with a comprehensive collection of TIS context sequences across eukaryotes in a range from -10 to + 6. The compilation covers species of 30 vertebrates, 17 invertebrates, 25 plants, 14 fungi, and 11 protists studied in silico; 23 experimental studies; data on biotechnology; and the discovery of 8 diseases associated with specific mutations. Additionally, TIS context sequences of cellular IRESs were included. AUGcontext DB belongs to the National Institute of Cancer (Instituto Nacional de Cancerología, INCan), Mexico, and is freely available at http://108.161.138.77:8096/. Our catalogue allows us to do comparative studies between species, may help improve the diagnosis of certain diseases, and will be key to maximize the production of recombinant proteins.

{"title":"AUGcontext DB: a comprehensive catalog of the mRNA AUG initiator codon context across eukaryotes.","authors":"Vincent G Osnaya, Laura Gómez-Romero, Gabriel Moreno-Hagelsieb, Greco Hernández","doi":"10.1080/15476286.2025.2465196","DOIUrl":"10.1080/15476286.2025.2465196","url":null,"abstract":"<p><p>The mRNA translation defines the composition of the cell proteome in all forms of life and diseases. In this process, precise selection of the mRNA translation initiation site (TIS) is crucial, as it establishes the correct open reading frame for triplet decoding. We have gathered and curated all published TIS consensus context sequences. We also included the TIS consensus context from novel 538 fungal genomes available from NCBI's RefSeq database. To do so, we wrote ad hoc programs in PERL to find and extract the TIS for each annotated gene, plus ten bases upstream and three downstream. For each genome, the sequences around the TIS of each gene were obtained, and the consensus was further calculated according to the Cavener rules and by the LOGOS algorithm. We created AUGcontext DB, a portal with a comprehensive collection of TIS context sequences across eukaryotes in a range from -10 to + 6. The compilation covers species of 30 vertebrates, 17 invertebrates, 25 plants, 14 fungi, and 11 protists studied in silico; 23 experimental studies; data on biotechnology; and the discovery of 8 diseases associated with specific mutations. Additionally, TIS context sequences of cellular IRESs were included. AUGcontext DB belongs to the National Institute of Cancer (Instituto Nacional de Cancerología, INCan), Mexico, and is freely available at http://108.161.138.77:8096/. Our catalogue allows us to do comparative studies between species, may help improve the diagnosis of certain diseases, and will be key to maximize the production of recombinant proteins.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-5"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of the RNA alternative decay cis element into a high-affinity target for the immunomodulatory protein Roquin.
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-01-13 DOI: 10.1080/15476286.2024.2448391
Jan-Niklas Tants, Katharina Friedrich, Jasmina Neumann, Andreas Schlundt

RNA cis elements play pivotal roles in regulatory processes, e.g. in transcriptional and translational regulation. Two stem-looped cis elements, the constitutive and alternative decay elements (CDE and ADE, respectively) are shape-specifically recognized in mRNA 3' untranslated regions (UTRs) by the immune-regulatory protein Roquin. Roquin initiates mRNA decay and contributes to balanced transcript levels required for immune homoeostasis. While the interaction of Roquin with several CDEs is described, our knowledge about ADE complex formation is limited to the mRNA of Ox40, a gene encoding a T-cell costimulatory receptor. The Ox40 3'UTR comprises both a CDE and ADE, each sufficient for Roquin-mediated control. Opposed to highly conserved and abundant CDE structures, ADEs are rarer, but predicted to exhibit a greater structural heterogeneity. This raises the question of how and when two structurally distinct cis elements evolved as equal target motifs for Roquin. Using an interdisciplinary approach, we here monitor the evolution of sequence and structure features of the Ox40 ADE across species. We designed RNA variants to probe en-detail determinants steering Roquin-RNA complex formation. Specifically, those reveal the contribution of a second RNA-binding interface of Roquin for recognition of the ADE basal stem region. In sum, our study sheds light on how the conserved Roquin protein selected ADE-specific structural features to evolve a second high-affinity mRNA target cis element relevant for adaptive immune regulation. As our findings also allow expanding the RNA target spectrum of Roquin, the approach can serve a paradigm for understanding RNA-protein specificity through back-tracing the evolution of the RNA element.

{"title":"Evolution of the RNA alternative decay <i>cis</i> element into a high-affinity target for the immunomodulatory protein Roquin.","authors":"Jan-Niklas Tants, Katharina Friedrich, Jasmina Neumann, Andreas Schlundt","doi":"10.1080/15476286.2024.2448391","DOIUrl":"https://doi.org/10.1080/15476286.2024.2448391","url":null,"abstract":"<p><p>RNA <i>cis</i> elements play pivotal roles in regulatory processes, e.g. in transcriptional and translational regulation. Two stem-looped <i>cis</i> elements, the constitutive and alternative decay elements (CDE and ADE, respectively) are shape-specifically recognized in mRNA 3' untranslated regions (UTRs) by the immune-regulatory protein Roquin. Roquin initiates mRNA decay and contributes to balanced transcript levels required for immune homoeostasis. While the interaction of Roquin with several CDEs is described, our knowledge about ADE complex formation is limited to the mRNA of <i>Ox40</i>, a gene encoding a T-cell costimulatory receptor. The <i>Ox40</i> 3'UTR comprises both a CDE and ADE, each sufficient for Roquin-mediated control. Opposed to highly conserved and abundant CDE structures, ADEs are rarer, but predicted to exhibit a greater structural heterogeneity. This raises the question of how and when two structurally distinct <i>cis</i> elements evolved as equal target motifs for Roquin. Using an interdisciplinary approach, we here monitor the evolution of sequence and structure features of the <i>Ox40</i> ADE across species. We designed RNA variants to probe en-detail determinants steering Roquin-RNA complex formation. Specifically, those reveal the contribution of a second RNA-binding interface of Roquin for recognition of the ADE basal stem region. In sum, our study sheds light on how the conserved Roquin protein selected ADE-specific structural features to evolve a second high-affinity mRNA target <i>cis</i> element relevant for adaptive immune regulation. As our findings also allow expanding the RNA target spectrum of Roquin, the approach can serve a paradigm for understanding RNA-protein specificity through back-tracing the evolution of the RNA element.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"22 1","pages":"1-12"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730611/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of deleterious non-synonymous single nucleotide polymorphisms in the mRNA decay activator ZFP36L2. mRNA衰变激活子ZFP36L2中有害非同义单核苷酸多态性的鉴定。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2024-12-13 DOI: 10.1080/15476286.2024.2437590
Betül Akçeşme, Hilal Hekimoğlu, Venkat R Chirasani, Şeyma İş, Habibe Nur Atmaca, Justin M Waldern, Silvia B V Ramos

More than 4,000 single nucleotide polymorphisms (SNP) variants have been identified in the human ZFP36L2 gene, however only a few have been studied in the context of protein function. The tandem zinc finger domain of ZFP36L2, an RNA binding protein, is the functional domain that binds to its target mRNAs. This protein/RNA interaction triggers mRNA degradation, controlling gene expression. We identified 32 non-synonymous SNPs (nsSNPs) in the tandem zinc finger domain of ZFP36L2 that could have possible deleterious impacts in humans. Using different bioinformatic strategies, we prioritized five among these 32 nsSNPs, namely rs375096815, rs1183688047, rs1214015428, rs1215671792 and rs920398592 to be validated. When we experimentally tested the functionality of these protein variants using gel shift assays, all five (Y154H, R160W, R184C, G204D, and C206F) resulted in a dramatic reduction in RNA binding compared to the WT protein. To understand the mechanistic effect of these variants on the protein/RNA interaction, we employed DUET, DynaMut and PyMOL to investigate structural changes in the protein. Additionally, we conducted Molecular Docking and Molecular Dynamics Simulations to fine tune the active behaviour of this biomolecular system at an atomic level. Our results propose atomic explanations for the impact of each of these five genetic variants identified.

在人类ZFP36L2基因中已经发现了4000多个单核苷酸多态性(SNP)变体,但只有少数在蛋白质功能方面得到了研究。RNA结合蛋白ZFP36L2的串联锌指结构域是与其靶mrna结合的功能结构域。这种蛋白质/RNA相互作用触发mRNA降解,控制基因表达。我们在ZFP36L2的串联锌指结构域中发现了32个非同义snp (nssnp),这些snp可能对人类产生有害影响。采用不同的生物信息学策略,我们从32个nssnp中选择5个优先进行验证,分别是rs375096815、rs1183688047、rs1214015428、rs1215671792和rs920398592。当我们使用凝胶移位法实验测试这些蛋白质变体的功能时,与WT蛋白相比,所有五种(Y154H, R160W, R184C, G204D和C206F)导致RNA结合显著减少。为了了解这些变异对蛋白质/RNA相互作用的机制影响,我们使用DUET、DynaMut和PyMOL来研究蛋白质的结构变化。此外,我们还进行了分子对接和分子动力学模拟,以在原子水平上微调这种生物分子系统的活性行为。我们的研究结果为这五种基因变异的影响提出了原子解释。
{"title":"Identification of deleterious non-synonymous single nucleotide polymorphisms in the mRNA decay activator ZFP36L2.","authors":"Betül Akçeşme, Hilal Hekimoğlu, Venkat R Chirasani, Şeyma İş, Habibe Nur Atmaca, Justin M Waldern, Silvia B V Ramos","doi":"10.1080/15476286.2024.2437590","DOIUrl":"10.1080/15476286.2024.2437590","url":null,"abstract":"<p><p>More than 4,000 single nucleotide polymorphisms (SNP) variants have been identified in the human <i>ZFP36L2</i> gene, however only a few have been studied in the context of protein function. The tandem zinc finger domain of ZFP36L2, an RNA binding protein, is the functional domain that binds to its target mRNAs. This protein/RNA interaction triggers mRNA degradation, controlling gene expression. We identified 32 non-synonymous SNPs (nsSNPs) in the tandem zinc finger domain of ZFP36L2 that could have possible deleterious impacts in humans. Using different bioinformatic strategies, we prioritized five among these 32 nsSNPs, namely rs375096815, rs1183688047, rs1214015428, rs1215671792 and rs920398592 to be validated. When we experimentally tested the functionality of these protein variants using gel shift assays, all five (Y154H, R160W, R184C, G204D, and C206F) resulted in a dramatic reduction in RNA binding compared to the WT protein. To understand the mechanistic effect of these variants on the protein/RNA interaction, we employed DUET, DynaMut and PyMOL to investigate structural changes in the protein. Additionally, we conducted Molecular Docking and Molecular Dynamics Simulations to fine tune the active behaviour of this biomolecular system at an atomic level. Our results propose atomic explanations for the impact of each of these five genetic variants identified.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"22 1","pages":"1-15"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142819035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Germ granule-mediated mRNA storage and translational control.
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-02-06 DOI: 10.1080/15476286.2025.2462276
Hoang-Anh Pham-Bui, Mihye Lee

Germ cells depend on specialized post-transcriptional regulation for proper development and function, much of which is mediated by dynamic RNA granules. These membrane-less organelles form through the condensation of RNA and proteins, governed by multivalent biomolecular interactions. RNA granules compartmentalize cellular components, selectively enriching specific factors and modulating biochemical reactions. Over recent decades, various types of RNA granules have been identified in germ cells across species, with extensive studies uncovering their molecular roles and developmental significance. This review explores the mRNA regulatory mechanisms mediated by RNA granules in germ cells. We discuss the distinct spatial organization of specific granule components and the variations in material states of germ granules, which contribute to the regulation of mRNA storage and translation. Additionally, we highlight emerging research on how changes in these material states, during developmental stages, reflect the dynamic nature of germ granules and their critical role in development.

{"title":"Germ granule-mediated mRNA storage and translational control.","authors":"Hoang-Anh Pham-Bui, Mihye Lee","doi":"10.1080/15476286.2025.2462276","DOIUrl":"10.1080/15476286.2025.2462276","url":null,"abstract":"<p><p>Germ cells depend on specialized post-transcriptional regulation for proper development and function, much of which is mediated by dynamic RNA granules. These membrane-less organelles form through the condensation of RNA and proteins, governed by multivalent biomolecular interactions. RNA granules compartmentalize cellular components, selectively enriching specific factors and modulating biochemical reactions. Over recent decades, various types of RNA granules have been identified in germ cells across species, with extensive studies uncovering their molecular roles and developmental significance. This review explores the mRNA regulatory mechanisms mediated by RNA granules in germ cells. We discuss the distinct spatial organization of specific granule components and the variations in material states of germ granules, which contribute to the regulation of mRNA storage and translation. Additionally, we highlight emerging research on how changes in these material states, during developmental stages, reflect the dynamic nature of germ granules and their critical role in development.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-11"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810088/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143080907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
RNA Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1