In-vitro gadolinium retro-microdialysis in agarose gel-a human brain phantom study.

Frontiers in radiology Pub Date : 2024-01-31 eCollection Date: 2024-01-01 DOI:10.3389/fradi.2024.1085834
Chisomo Zimphango, Marius O Mada, Stephen J Sawiak, Susan Giorgi-Coll, T Adrian Carpenter, Peter J Hutchinson, Keri L H Carpenter, Matthew G Stovell
{"title":"<i>In-vitro</i> gadolinium retro-microdialysis in agarose gel-a human brain phantom study.","authors":"Chisomo Zimphango, Marius O Mada, Stephen J Sawiak, Susan Giorgi-Coll, T Adrian Carpenter, Peter J Hutchinson, Keri L H Carpenter, Matthew G Stovell","doi":"10.3389/fradi.2024.1085834","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>Cerebral microdialysis is a technique that enables monitoring of the neurochemistry of patients with significant acquired brain injury, such as traumatic brain injury (TBI) and subarachnoid haemorrhage (SAH). Cerebral microdialysis can also be used to characterise the neuro-pharmacokinetics of small-molecule study substrates using retrodialysis/retromicrodialysis. However, challenges remain: (i) lack of a simple, stable, and inexpensive brain tissue model for the study of drug neuropharmacology; and (ii) it is unclear how far small study-molecules administered via retrodialysis diffuse within the human brain.</p><p><strong>Materials and methods: </strong>Here, we studied the radial diffusion distance of small-molecule gadolinium-DTPA from microdialysis catheters in a newly developed, simple, stable, inexpensive brain tissue model as a precursor for in-vivo studies. Brain tissue models consisting of 0.65% weight/volume agarose gel in two kinds of buffers were created. The distribution of a paramagnetic contrast agent gadolinium-DTPA (Gd-DTPA) perfusion from microdialysis catheters using magnetic resonance imaging (MRI) was characterized as a surrogate for other small-molecule study substrates.</p><p><strong>Results: </strong>We found the mean radial diffusion distance of Gd-DTPA to be 18.5 mm after 24 h (<i>p</i> < 0.0001).</p><p><strong>Conclusion: </strong>Our brain tissue model provides avenues for further tests and research into infusion studies using cerebral microdialysis, and consequently effective focal drug delivery for patients with TBI and other brain disorders.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864450/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fradi.2024.1085834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rationale and objectives: Cerebral microdialysis is a technique that enables monitoring of the neurochemistry of patients with significant acquired brain injury, such as traumatic brain injury (TBI) and subarachnoid haemorrhage (SAH). Cerebral microdialysis can also be used to characterise the neuro-pharmacokinetics of small-molecule study substrates using retrodialysis/retromicrodialysis. However, challenges remain: (i) lack of a simple, stable, and inexpensive brain tissue model for the study of drug neuropharmacology; and (ii) it is unclear how far small study-molecules administered via retrodialysis diffuse within the human brain.

Materials and methods: Here, we studied the radial diffusion distance of small-molecule gadolinium-DTPA from microdialysis catheters in a newly developed, simple, stable, inexpensive brain tissue model as a precursor for in-vivo studies. Brain tissue models consisting of 0.65% weight/volume agarose gel in two kinds of buffers were created. The distribution of a paramagnetic contrast agent gadolinium-DTPA (Gd-DTPA) perfusion from microdialysis catheters using magnetic resonance imaging (MRI) was characterized as a surrogate for other small-molecule study substrates.

Results: We found the mean radial diffusion distance of Gd-DTPA to be 18.5 mm after 24 h (p < 0.0001).

Conclusion: Our brain tissue model provides avenues for further tests and research into infusion studies using cerebral microdialysis, and consequently effective focal drug delivery for patients with TBI and other brain disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
琼脂糖凝胶中的体外钆后微透析--人脑模型研究。
原理和目标:脑微量透析是一种能够监测严重后天性脑损伤(如创伤性脑损伤(TBI)和蛛网膜下腔出血(SAH))患者神经化学的技术。脑微量透析还可用于利用逆透析/逆微量透析鉴定小分子研究底物的神经药代动力学。然而,挑战依然存在:(i) 缺乏用于药物神经药理学研究的简单、稳定、廉价的脑组织模型;(ii) 尚不清楚通过逆透析给药的小分子研究物质在人脑中的扩散距离。材料与方法:在此,我们研究了小分子钆-DTPA 从微透析导管在新开发的简单、稳定、廉价的脑组织模型中的径向扩散距离,以此作为体内研究的前体。脑组织模型由 0.65% 重量/体积的琼脂糖凝胶和两种缓冲液组成。利用磁共振成像(MRI)对顺磁性对比剂钆-DTPA(Gd-DTPA)从微透析导管灌注的分布进行了表征,以此作为其他小分子研究底物的替代物:结果:我们发现,24 小时后 Gd-DTPA 的平均径向扩散距离为 18.5 毫米(p 结论:Gd-DTPA 的平均径向扩散距离为 18.5 毫米:我们的脑组织模型为进一步测试和研究使用脑微透析进行输注研究提供了途径,从而为创伤性脑损伤和其他脑部疾病患者提供有效的病灶给药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
CT perfusion imaging in aneurysmal subarachnoid hemorrhage. State of the art. Seven-tesla magnetic resonance imaging of the nervus terminalis, olfactory tracts, and olfactory bulbs in COVID-19 patients with anosmia and hypogeusia. Intranodal lymphangiography combined with foam sclerotherapy embolization of thoracic duct in the treatment of postoperative chylous leakage for thyroid carcinoma: a case report and review. Photon-counting CT for forensic death investigations-a glance into the future of virtual autopsy. Artificial intelligence and machine learning applications for the imaging of bone and soft tissue tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1