Improving the identification of relevant variants in genome information systems: A methodological approach with a case study on early onset Alzheimer's disease

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Data & Knowledge Engineering Pub Date : 2024-02-09 DOI:10.1016/j.datak.2024.102284
Mireia Costa, Ana León, Óscar Pastor
{"title":"Improving the identification of relevant variants in genome information systems: A methodological approach with a case study on early onset Alzheimer's disease","authors":"Mireia Costa,&nbsp;Ana León,&nbsp;Óscar Pastor","doi":"10.1016/j.datak.2024.102284","DOIUrl":null,"url":null,"abstract":"<div><p>Alzheimer's disease is the most common type of dementia in the elderly. Nevertheless, there is an early onset form that is difficult to diagnose precisely. As the genetic component is the most critical factor in developing this disease, identifying relevant genetic variants is key to obtaining a more reliable and straightforward diagnosis. The information about these variants is stored in an extensive number of data sources, which must be carefully analyzed to select only the information with sufficient quality to be used in a clinical setting. This selection has become complex due to the increasing available genomic information. The SILE method was designed to systematize identifying relevant variants for a disease in this challenging context. However, several problems on how SILE identifies relevant variants were discovered when applying the method to the early onset form of Alzheimer's disease. More specifically, the method failed to address specific features of this disease such as its low incidence and familiar component. This paper proposes an improvement of the identification process defined by the SILE method to make it applicable to a further spectrum of diseases. Details of how the proposed solution has been applied are also reported. As a result of this improvement, a set of 29 variants has been identified (25 variants Accepted with a Limited Evidence and 4 Accepted with Moderate Evidence). This constitutes a valuable result that facilitates and reinforces the genetic diagnosis of the disease.</p></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"151 ","pages":"Article 102284"},"PeriodicalIF":2.7000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169023X24000089/pdfft?md5=571739f0b90877da191a9d94a852f178&pid=1-s2.0-S0169023X24000089-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24000089","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease is the most common type of dementia in the elderly. Nevertheless, there is an early onset form that is difficult to diagnose precisely. As the genetic component is the most critical factor in developing this disease, identifying relevant genetic variants is key to obtaining a more reliable and straightforward diagnosis. The information about these variants is stored in an extensive number of data sources, which must be carefully analyzed to select only the information with sufficient quality to be used in a clinical setting. This selection has become complex due to the increasing available genomic information. The SILE method was designed to systematize identifying relevant variants for a disease in this challenging context. However, several problems on how SILE identifies relevant variants were discovered when applying the method to the early onset form of Alzheimer's disease. More specifically, the method failed to address specific features of this disease such as its low incidence and familiar component. This paper proposes an improvement of the identification process defined by the SILE method to make it applicable to a further spectrum of diseases. Details of how the proposed solution has been applied are also reported. As a result of this improvement, a set of 29 variants has been identified (25 variants Accepted with a Limited Evidence and 4 Accepted with Moderate Evidence). This constitutes a valuable result that facilitates and reinforces the genetic diagnosis of the disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进基因组信息系统中相关变异的识别:方法论方法与早发性阿尔茨海默病案例研究
阿尔茨海默病是最常见的老年痴呆症。然而,也有一种难以精确诊断的早发型老年痴呆症。由于遗传因素是导致这种疾病的最关键因素,因此识别相关的遗传变异是获得更可靠、更直接诊断的关键。有关这些变异的信息存储在大量数据源中,必须对这些数据源进行仔细分析,只选择质量足够高的信息用于临床。由于可用的基因组信息越来越多,这种选择变得越来越复杂。SILE 方法就是为了在这种充满挑战的情况下系统地识别疾病的相关变异而设计的。然而,在将 SILE 方法应用于早发性阿尔茨海默病时,发现了该方法在识别相关变异方面存在的一些问题。更具体地说,该方法未能解决这种疾病的具体特征,如发病率低和熟悉的成分。本文建议改进 SILE 方法定义的识别过程,使其适用于更多的疾病。本文还详细介绍了如何应用所提出的解决方案。经过改进后,已识别出一组 29 个变体(25 个变体以有限证据接受,4 个以中等证据接受)。这是一项宝贵的成果,有助于并加强疾病的基因诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
期刊最新文献
Goal modelling in aeronautics: Practical applications for aircraft and manufacturing designs Ethical reasoning methods for ICT: What they are and when to use them SSQTKG: A Subgraph-based Semantic Query Approach for Temporal Knowledge Graph NoSQL document data migration strategy in the context of schema evolution VarClaMM: A reference meta-model to understand DNA variant classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1