Strong Convergence of a Random Actions Model in Opinion Dynamics

IF 3 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal and Information Processing over Networks Pub Date : 2024-02-01 DOI:10.1109/TSIPN.2024.3361373
Olle Abrahamsson;Danyo Danev;Erik G. Larsson
{"title":"Strong Convergence of a Random Actions Model in Opinion Dynamics","authors":"Olle Abrahamsson;Danyo Danev;Erik G. Larsson","doi":"10.1109/TSIPN.2024.3361373","DOIUrl":null,"url":null,"abstract":"We study an opinion dynamics model in which each agent takes a random Bernoulli distributed action whose probability is updated at each discrete time step, and we prove that this model converges almost surely to consensus. We also provide a detailed critique of a claimed proof of this result in the literature. We generalize the result by proving that the assumption of irreducibility in the original model is not necessary. Furthermore, we prove as a corollary of the generalized result that the almost sure convergence to consensus holds also in the presence of a stubborn agent which never changes its opinion. In addition, we show that the model, in both the original and generalized cases, converges to consensus also in \n<inline-formula><tex-math>$r$</tex-math></inline-formula>\nth mean.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"10 ","pages":"147-161"},"PeriodicalIF":3.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10418558/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We study an opinion dynamics model in which each agent takes a random Bernoulli distributed action whose probability is updated at each discrete time step, and we prove that this model converges almost surely to consensus. We also provide a detailed critique of a claimed proof of this result in the literature. We generalize the result by proving that the assumption of irreducibility in the original model is not necessary. Furthermore, we prove as a corollary of the generalized result that the almost sure convergence to consensus holds also in the presence of a stubborn agent which never changes its opinion. In addition, we show that the model, in both the original and generalized cases, converges to consensus also in $r$ th mean.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
舆论动力学中随机行动模型的强收敛性
我们研究了一个舆论动态模型,在该模型中,每个代理都采取随机伯努利分布式行动,其概率在每个离散时间步中都会更新,我们证明了该模型几乎肯定会收敛到共识。我们还对文献中声称的这一结果的证明进行了详细批判。我们通过证明原始模型中的不可还原性假设并非必要,从而推广了这一结果。此外,作为广义结果的一个推论,我们还证明了在存在永不改变意见的顽固代理的情况下,几乎肯定会趋同于共识也是成立的。此外,我们还证明,无论是原始模型还是广义模型,都能以 $r$th 平均值收敛到共识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Signal and Information Processing over Networks
IEEE Transactions on Signal and Information Processing over Networks Computer Science-Computer Networks and Communications
CiteScore
5.80
自引率
12.50%
发文量
56
期刊介绍: The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.
期刊最新文献
Reinforcement Learning-Based Event-Triggered Constrained Containment Control for Perturbed Multiagent Systems Finite-Time Performance Mask Function-Based Distributed Privacy-Preserving Consensus: Case Study on Optimal Dispatch of Energy System Discrete-Time Controllability of Cartesian Product Networks Generalized Simplicial Attention Neural Networks A Continuous-Time Algorithm for Distributed Optimization With Nonuniform Time-Delay Under Switching and Unbalanced Digraphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1