{"title":"A comparative study of passive drug diffusion through human skin via intercellular and sweat duct route: effect of aging.","authors":"Aditya Ranjan, Vijay S Duryodhan, Nagesh D Patil","doi":"10.1007/s13346-024-01529-6","DOIUrl":null,"url":null,"abstract":"<p><p>A method of drug delivery that could provide control over medicine reaching the bloodstream for systemic circulation would be of immense importance. This work presents a comparative study of the temporal and spatial variation of drugs diffusing passively through two separate routes of human skin, namely intercellular (ICR) and sweat duct route (SDR). An analysis is carried out for two age groups (young < 40 years and old > 60 years of age). Governing equations based on Fick's law for mass transfer have been solved numerically using an in-house developed code. The code has been validated thoroughly with numerical and experimental work from the literature. Each skin route is modeled into three compartments sandwiched between the donor and receiver compartments. To understand the role of diffusion and partition coefficient on drug permeation, four drugs, namely hydrocortisone, trans-cinnamic acid, caffeine, and benzoic acid, are considered. The drug diffusion rate is found greater through ICR as compared to SDR. Further, the amount of drugs diffusing through both routes increases with age. Desirable drug characteristic is inferred to be a lower value of partition coefficient and a higher value of diffusion coefficient. This study could lead to real-time assessment of drugs reaching the bloodstream and beyond.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01529-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
A method of drug delivery that could provide control over medicine reaching the bloodstream for systemic circulation would be of immense importance. This work presents a comparative study of the temporal and spatial variation of drugs diffusing passively through two separate routes of human skin, namely intercellular (ICR) and sweat duct route (SDR). An analysis is carried out for two age groups (young < 40 years and old > 60 years of age). Governing equations based on Fick's law for mass transfer have been solved numerically using an in-house developed code. The code has been validated thoroughly with numerical and experimental work from the literature. Each skin route is modeled into three compartments sandwiched between the donor and receiver compartments. To understand the role of diffusion and partition coefficient on drug permeation, four drugs, namely hydrocortisone, trans-cinnamic acid, caffeine, and benzoic acid, are considered. The drug diffusion rate is found greater through ICR as compared to SDR. Further, the amount of drugs diffusing through both routes increases with age. Desirable drug characteristic is inferred to be a lower value of partition coefficient and a higher value of diffusion coefficient. This study could lead to real-time assessment of drugs reaching the bloodstream and beyond.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.