Technological Challenges and Solutions in Emergency Remote Teaching for Nursing: An International Cross-Sectional Survey.

IF 2.3 Q3 MEDICAL INFORMATICS Healthcare Informatics Research Pub Date : 2024-01-01 Epub Date: 2024-01-31 DOI:10.4258/hir.2024.30.1.49
Eunjoo Jeon, Laura-Maria Peltonen, Lorraine J Block, Charlene Ronquillo, Jude L Tayaben, Raji Nibber, Lisiane Pruinelli, Erika Lozada Perezmitre, Janine Sommer, Maxim Topaz, Gabrielle Jacklin Eler, Henrique Yoshikazu Shishido, Shanti Wardaningsih, Sutantri Sutantri, Samira Ali, Dari Alhuwail, Alaa Abd-Alrazaq, Laila Akhu-Zaheya, Ying-Li Lee, Shao-Hui Shu, Jisan Lee
{"title":"Technological Challenges and Solutions in Emergency Remote Teaching for Nursing: An International Cross-Sectional Survey.","authors":"Eunjoo Jeon, Laura-Maria Peltonen, Lorraine J Block, Charlene Ronquillo, Jude L Tayaben, Raji Nibber, Lisiane Pruinelli, Erika Lozada Perezmitre, Janine Sommer, Maxim Topaz, Gabrielle Jacklin Eler, Henrique Yoshikazu Shishido, Shanti Wardaningsih, Sutantri Sutantri, Samira Ali, Dari Alhuwail, Alaa Abd-Alrazaq, Laila Akhu-Zaheya, Ying-Li Lee, Shao-Hui Shu, Jisan Lee","doi":"10.4258/hir.2024.30.1.49","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>With the sudden global shift to online learning modalities, this study aimed to understand the unique challenges and experiences of emergency remote teaching (ERT) in nursing education.</p><p><strong>Methods: </strong>We conducted a comprehensive online international cross-sectional survey to capture the current state and firsthand experiences of ERT in the nursing discipline. Our analytical methods included a combination of traditional statistical analysis, advanced natural language processing techniques, latent Dirichlet allocation using Python, and a thorough qualitative assessment of feedback from open-ended questions.</p><p><strong>Results: </strong>We received responses from 328 nursing educators from 18 different countries. The data revealed generally positive satisfaction levels, strong technological self-efficacy, and significant support from their institutions. Notably, the characteristics of professors, such as age (p = 0.02) and position (p = 0.03), influenced satisfaction levels. The ERT experience varied significantly by country, as evidenced by satisfaction (p = 0.05), delivery (p = 0.001), teacher-student interaction (p = 0.04), and willingness to use ERT in the future (p = 0.04). However, concerns were raised about the depth of content, the transition to online delivery, teacher-student interaction, and the technology gap.</p><p><strong>Conclusions: </strong>Our findings can help advance nursing education. Nevertheless, collaborative efforts from all stakeholders are essential to address current challenges, achieve digital equity, and develop a standardized curriculum for nursing education.</p>","PeriodicalId":12947,"journal":{"name":"Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879829/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4258/hir.2024.30.1.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: With the sudden global shift to online learning modalities, this study aimed to understand the unique challenges and experiences of emergency remote teaching (ERT) in nursing education.

Methods: We conducted a comprehensive online international cross-sectional survey to capture the current state and firsthand experiences of ERT in the nursing discipline. Our analytical methods included a combination of traditional statistical analysis, advanced natural language processing techniques, latent Dirichlet allocation using Python, and a thorough qualitative assessment of feedback from open-ended questions.

Results: We received responses from 328 nursing educators from 18 different countries. The data revealed generally positive satisfaction levels, strong technological self-efficacy, and significant support from their institutions. Notably, the characteristics of professors, such as age (p = 0.02) and position (p = 0.03), influenced satisfaction levels. The ERT experience varied significantly by country, as evidenced by satisfaction (p = 0.05), delivery (p = 0.001), teacher-student interaction (p = 0.04), and willingness to use ERT in the future (p = 0.04). However, concerns were raised about the depth of content, the transition to online delivery, teacher-student interaction, and the technology gap.

Conclusions: Our findings can help advance nursing education. Nevertheless, collaborative efforts from all stakeholders are essential to address current challenges, achieve digital equity, and develop a standardized curriculum for nursing education.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
护理学紧急远程教学中的技术挑战和解决方案:国际横断面调查。
目的:随着全球突然转向在线学习模式,本研究旨在了解护理教育中紧急远程教学(ERT)的独特挑战和经验:随着全球突然转向在线学习模式,本研究旨在了解护理教育中紧急远程教学(ERT)的独特挑战和经验:我们开展了一项全面的在线国际横断面调查,以了解护理学科中紧急远程教学的现状和第一手经验。我们的分析方法包括传统的统计分析、先进的自然语言处理技术、使用 Python 的潜在 Dirichlet 分配以及对开放式问题反馈的全面定性评估:我们收到了来自 18 个不同国家 328 名护理教育工作者的回复。结果:我们收到了来自 18 个不同国家 328 名护理教育工作者的回复,数据显示,他们的满意度普遍较高,具有较强的技术自我效能感,并得到了所在机构的大力支持。值得注意的是,教授的年龄(p = 0.02)和职位(p = 0.03)等特征会影响满意度。不同国家的 ERT 体验有很大差异,具体表现在满意度(p = 0.05)、教学效果(p = 0.001)、师生互动(p = 0.04)以及未来使用 ERT 的意愿(p = 0.04)。然而,人们对内容的深度、向在线授课的过渡、师生互动和技术差距表示担忧:我们的研究结果有助于推动护理教育的发展。尽管如此,所有利益相关者的共同努力对于应对当前挑战、实现数字公平和开发标准化护理教育课程至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Healthcare Informatics Research
Healthcare Informatics Research MEDICAL INFORMATICS-
CiteScore
4.90
自引率
6.90%
发文量
44
期刊最新文献
Status and Trends of the Digital Healthcare Industry. Technology and Access to Healthcare with Different Scheduling Systems: A Scoping Review. Associations between Nicotine Dependence, Smartphone Usage Patterns, and Expected Compliance with a Smoking Cessation Application among Smokers. ChatGPT Predicts In-Hospital All-Cause Mortality for Sepsis: In-Context Learning with the Korean Sepsis Alliance Database. Data Market-related Issues in the Medical Field: Accelerating Digital Healthcare.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1