Enhancing Personalized Healthcare via Capturing Disease Severity, Interaction, and Progression.

Yanchao Tan, Zihao Zhou, Leisheng Yu, Weiming Liu, Chaochao Chen, Guofang Ma, Xiao Hu, Vicki S Hertzberg, Carl Yang
{"title":"Enhancing Personalized Healthcare via Capturing Disease Severity, Interaction, and Progression.","authors":"Yanchao Tan, Zihao Zhou, Leisheng Yu, Weiming Liu, Chaochao Chen, Guofang Ma, Xiao Hu, Vicki S Hertzberg, Carl Yang","doi":"10.1109/icdm58522.2023.00173","DOIUrl":null,"url":null,"abstract":"<p><p>Personalized diagnosis prediction based on electronic health records (EHR) of patients is a promising yet challenging task for AI in healthcare. Existing studies typically ignore the heterogeneity of diseases across different patients. For example, diabetes can have different complications across different patients (e.g., hyperlipidemia and circulatory disorder), which requires personalized diagnoses and treatments. Specifically, existing models fail to consider 1) <i>varying severity</i> of the same diseases for different patients, 2) <i>complex</i> <i>interactions</i> among syndromic diseases, and 3) <i>dynamic progression</i> of chronic diseases. In this work, we propose to perform personalized diagnosis prediction based on EHR data via capturing disease severity, interaction, and progression. In particular, we enable personalized disease representations via severity-driven embeddings at the disease level. Then, at the visit level, we propose to capture higher-order interactions among diseases that can collectively affect patients' health status via hypergraph-based aggregation; at the patient level, we devise a personalized generative model based on neural ordinary differential equations to capture the continuous-time disease progressions underlying discrete and incomplete visits. Extensive experiments on two real-world EHR datasets show significant performance gains brought by our approach, yielding average improvements of 10.70% for diagnosis prediction over state-of-the-art competitors.</p>","PeriodicalId":74565,"journal":{"name":"Proceedings. IEEE International Conference on Data Mining","volume":"2023 ","pages":"1349-1354"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868667/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icdm58522.2023.00173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Personalized diagnosis prediction based on electronic health records (EHR) of patients is a promising yet challenging task for AI in healthcare. Existing studies typically ignore the heterogeneity of diseases across different patients. For example, diabetes can have different complications across different patients (e.g., hyperlipidemia and circulatory disorder), which requires personalized diagnoses and treatments. Specifically, existing models fail to consider 1) varying severity of the same diseases for different patients, 2) complex interactions among syndromic diseases, and 3) dynamic progression of chronic diseases. In this work, we propose to perform personalized diagnosis prediction based on EHR data via capturing disease severity, interaction, and progression. In particular, we enable personalized disease representations via severity-driven embeddings at the disease level. Then, at the visit level, we propose to capture higher-order interactions among diseases that can collectively affect patients' health status via hypergraph-based aggregation; at the patient level, we devise a personalized generative model based on neural ordinary differential equations to capture the continuous-time disease progressions underlying discrete and incomplete visits. Extensive experiments on two real-world EHR datasets show significant performance gains brought by our approach, yielding average improvements of 10.70% for diagnosis prediction over state-of-the-art competitors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过捕捉疾病严重程度、互动和进展情况,加强个性化医疗保健。
基于患者电子健康记录(EHR)的个性化诊断预测是人工智能在医疗保健领域一项前景广阔但又充满挑战的任务。现有的研究通常忽略了不同患者疾病的异质性。例如,糖尿病在不同患者身上会产生不同的并发症(如高脂血症和循环障碍),这就需要个性化的诊断和治疗。具体来说,现有模型未能考虑到:1)不同患者同种疾病的严重程度不同;2)综合征疾病之间复杂的相互作用;3)慢性疾病的动态发展。在这项工作中,我们建议通过捕捉疾病的严重程度、相互作用和进展情况,在电子病历数据的基础上进行个性化诊断预测。特别是,我们在疾病层面通过严重性驱动的嵌入实现了个性化疾病表征。然后,在就诊层面,我们建议通过基于超图的聚合来捕捉疾病间的高阶交互,从而共同影响患者的健康状况;在患者层面,我们设计了一个基于神经常微分方程的个性化生成模型,以捕捉离散和不完整就诊背后的连续时间疾病进展。在两个真实世界的电子病历数据集上进行的广泛实验表明,我们的方法带来了显著的性能提升,在诊断预测方面比最先进的竞争对手平均提高了 10.70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Personalized Healthcare via Capturing Disease Severity, Interaction, and Progression. Heterogeneous Treatment Effect Estimation with Subpopulation Identification for Personalized Medicine in Opioid Use Disorder. RoS-KD: A Robust Stochastic Knowledge Distillation Approach for Noisy Medical Imaging. Robust Unsupervised Domain Adaptation from A Corrupted Source. Communication Efficient Tensor Factorization for Decentralized Healthcare Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1