{"title":"Vector database management systems: Fundamental concepts, use-cases, and current challenges","authors":"Toni Taipalus","doi":"10.1016/j.cogsys.2024.101216","DOIUrl":null,"url":null,"abstract":"<div><p>Vector database management systems have emerged as an important component in modern data management, driven by the growing importance for the need to computationally describe rich data such as texts, images and video in various domains such as recommender systems, similarity search, and chatbots. These data descriptions are captured as numerical vectors that are computationally inexpensive to store and compare. However, the unique characteristics of vectorized data, including high dimensionality and sparsity, demand specialized solutions for efficient storage, retrieval, and processing. This narrative literature review provides an accessible introduction to the fundamental concepts, use-cases, and current challenges associated with vector database management systems, offering an overview for researchers and practitioners seeking to facilitate effective vector data management.</p></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"85 ","pages":"Article 101216"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1389041724000093/pdfft?md5=c470854e4bee590cea4c3fc43ca20924&pid=1-s2.0-S1389041724000093-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000093","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Vector database management systems have emerged as an important component in modern data management, driven by the growing importance for the need to computationally describe rich data such as texts, images and video in various domains such as recommender systems, similarity search, and chatbots. These data descriptions are captured as numerical vectors that are computationally inexpensive to store and compare. However, the unique characteristics of vectorized data, including high dimensionality and sparsity, demand specialized solutions for efficient storage, retrieval, and processing. This narrative literature review provides an accessible introduction to the fundamental concepts, use-cases, and current challenges associated with vector database management systems, offering an overview for researchers and practitioners seeking to facilitate effective vector data management.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.