Mina Mohammadkhani , Dariush Gholami , Gholamhossein Riazi
{"title":"The effects of chronic morphine administration on spatial memory and microtubule dynamicity in male mice's brain","authors":"Mina Mohammadkhani , Dariush Gholami , Gholamhossein Riazi","doi":"10.1016/j.ibneur.2024.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>The examination of the influence of morphine on behavioral processes, specifically learning and memory, holds significant importance. Additionally, microtubule proteins play a pivotal role in cellular functions, and the dynamics of microtubules contribute to neural network connectivity, information processing, and memory storage. however, the molecular mechanism of morphine on microtubule dynamics, learning, and memory remains uncovered. In the present study, we examined the effects of chronic morphine administration on memory formation impairment and the kinetic alterations in microtubule proteins induced by morphine in mice. Chronic morphine administration at doses of 5 and 10 mg/kg dose-dependently decreased subjects' performance in spatial memory tasks, such as the Morris Water Maze and Y-maze spontaneous alternation behavior. Furthermore, morphine was found to stabilize microtubule structure, and increase polymerization, and total polymer mass. However, it simultaneously impaired microtubule dynamicity, stemming from structural changes in tubulin dimer structure. These findings emphasize the need for careful consideration of different doses when using morphine, urging a more cautious approach in the administration of this opioid medication.</p></div>","PeriodicalId":13195,"journal":{"name":"IBRO Neuroscience Reports","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667242124000204/pdfft?md5=d356eb4b08b97703fe9800457cba790b&pid=1-s2.0-S2667242124000204-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IBRO Neuroscience Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667242124000204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The examination of the influence of morphine on behavioral processes, specifically learning and memory, holds significant importance. Additionally, microtubule proteins play a pivotal role in cellular functions, and the dynamics of microtubules contribute to neural network connectivity, information processing, and memory storage. however, the molecular mechanism of morphine on microtubule dynamics, learning, and memory remains uncovered. In the present study, we examined the effects of chronic morphine administration on memory formation impairment and the kinetic alterations in microtubule proteins induced by morphine in mice. Chronic morphine administration at doses of 5 and 10 mg/kg dose-dependently decreased subjects' performance in spatial memory tasks, such as the Morris Water Maze and Y-maze spontaneous alternation behavior. Furthermore, morphine was found to stabilize microtubule structure, and increase polymerization, and total polymer mass. However, it simultaneously impaired microtubule dynamicity, stemming from structural changes in tubulin dimer structure. These findings emphasize the need for careful consideration of different doses when using morphine, urging a more cautious approach in the administration of this opioid medication.