Matthew J Gooden, Gina Norato, Katherine Landry, Sandra B Martin, Avindra Nath, Lauren Reoma
{"title":"Rethinking the clinical research protocol: Lessons learned from the COVID-19 pandemic and recommendations for reducing noncompliance.","authors":"Matthew J Gooden, Gina Norato, Katherine Landry, Sandra B Martin, Avindra Nath, Lauren Reoma","doi":"10.1177/17407745241232430","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, 103.4 million cases and 1.1 million deaths have occurred nationally as of November 2023. Despite the benefit of mitigating measures, the pandemic's effect on participant safety is rarely documented.</p><p><strong>Methods: </strong>This study assessed noncompliance occurring from July 2019 to August 2021 that were stratified by the date of noncompliance (before or after restrictions). Events were described by size, site, noncompliance type, primary category, subcategory, and cause. In addition, noncompliance associated with COVID-19 was analyzed to determine characteristics.</p><p><strong>Results: </strong>In total, 323 noncompliance events occurred across 21,146 participants at risk in 35 protocols. The overall rate of noncompliance increased from 0.008 events per participant to 0.022 events per participant after the COVID-19 restrictions (<i>p</i> < 0.001). For onsite protocols, the median within protocol change in rates was 0.001 (interquartile range = 0.141) after the onset of COVID-19 restrictions (<i>p</i> = 0.54). For large-sized protocols (<i>n</i> ≥ 100), the median within protocol change in rates was also 0.001 (interquartile range = 0.017) after COVID-19 restrictions (<i>p</i> = 0.15). For events related to COVID-19 restrictions, 160/162 (99%) were minor deviations, 161/162 (99%) were procedural noncompliance, and 124/162 (77%) were an incomplete study visit.</p><p><strong>Conclusion: </strong>These noncompliance events have implications for clinical trial methodology because nonadherence to trial design can lead to participant safety concerns and loss of trial data validity. Protocols should be written to better facilitate the capture of all safety and efficacy data. This recommendation should be considered when changes occur to the protocol environment that are outside of the study team's control.</p>","PeriodicalId":10685,"journal":{"name":"Clinical Trials","volume":" ","pages":"491-499"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11305973/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Trials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17407745241232430","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/aims: Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, 103.4 million cases and 1.1 million deaths have occurred nationally as of November 2023. Despite the benefit of mitigating measures, the pandemic's effect on participant safety is rarely documented.
Methods: This study assessed noncompliance occurring from July 2019 to August 2021 that were stratified by the date of noncompliance (before or after restrictions). Events were described by size, site, noncompliance type, primary category, subcategory, and cause. In addition, noncompliance associated with COVID-19 was analyzed to determine characteristics.
Results: In total, 323 noncompliance events occurred across 21,146 participants at risk in 35 protocols. The overall rate of noncompliance increased from 0.008 events per participant to 0.022 events per participant after the COVID-19 restrictions (p < 0.001). For onsite protocols, the median within protocol change in rates was 0.001 (interquartile range = 0.141) after the onset of COVID-19 restrictions (p = 0.54). For large-sized protocols (n ≥ 100), the median within protocol change in rates was also 0.001 (interquartile range = 0.017) after COVID-19 restrictions (p = 0.15). For events related to COVID-19 restrictions, 160/162 (99%) were minor deviations, 161/162 (99%) were procedural noncompliance, and 124/162 (77%) were an incomplete study visit.
Conclusion: These noncompliance events have implications for clinical trial methodology because nonadherence to trial design can lead to participant safety concerns and loss of trial data validity. Protocols should be written to better facilitate the capture of all safety and efficacy data. This recommendation should be considered when changes occur to the protocol environment that are outside of the study team's control.
期刊介绍:
Clinical Trials is dedicated to advancing knowledge on the design and conduct of clinical trials related research methodologies. Covering the design, conduct, analysis, synthesis and evaluation of key methodologies, the journal remains on the cusp of the latest topics, including ethics, regulation and policy impact.