Shuangyue Wang , Mengyao Li , Yang Liu , Junjie Shi , Ashraful Azam , Xiaotao Zu , Liang Qiao , Peter Reece , John Stride , Jack Yang , Danyang Wang , Sean Li
{"title":"Fabrication of transferable ultrathin Au films with eminent thermal stability via a nanocrystalline MoS2 interlayer","authors":"Shuangyue Wang , Mengyao Li , Yang Liu , Junjie Shi , Ashraful Azam , Xiaotao Zu , Liang Qiao , Peter Reece , John Stride , Jack Yang , Danyang Wang , Sean Li","doi":"10.1016/j.mtnano.2024.100460","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrathin gold (Au) films are a critical component in plasmonics, metal optics, and nano-electronics devices. However, fabricating ultrathin Au films faces a great challenge due to the dewetting behavior of Au when being deposited onto an oxide (such as SiO<sub>2</sub>/Si or Al<sub>2</sub>O<sub>3</sub>) substrate. This problem is often relieved by introducing a metal or an organic adhesion layer to bind the Au film with the substrate. While the interdiffusion and thermal instability of the adhesion layers often negatively affect the physical properties of the films. Besides, this kind of Au film is usually untransferable due to the strong chemical bonding at the interfaces. Herein, we demonstrate a new strategy of utilizing a nanocrystalline MoS<sub>2</sub> layer as the adhesion interlayer to stabilize the Au film. The atomically thin nanocrystalline MoS<sub>2</sub> with abundant fresh edges enhances the wetting of Au films and allows for the ultra-smoothness and a few nanometers in thickness of the Au films without interdiffusion. The resulting ultrathin Au films possess superior electrical conductivity, high optical transmittance, and eminent thermal stability, which are much better than those utilizing Cu or Ti as the adhesion layers. Moreover, these Au films can be easily transferred to arbitrary substrates. Our method provides a new benchmark in the fabrication of transferable ultrathin and thermally stable Au films.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"25 ","pages":"Article 100460"},"PeriodicalIF":8.2000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588842024000105/pdfft?md5=78d942e7da1cfb68709834b153284e42&pid=1-s2.0-S2588842024000105-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000105","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrathin gold (Au) films are a critical component in plasmonics, metal optics, and nano-electronics devices. However, fabricating ultrathin Au films faces a great challenge due to the dewetting behavior of Au when being deposited onto an oxide (such as SiO2/Si or Al2O3) substrate. This problem is often relieved by introducing a metal or an organic adhesion layer to bind the Au film with the substrate. While the interdiffusion and thermal instability of the adhesion layers often negatively affect the physical properties of the films. Besides, this kind of Au film is usually untransferable due to the strong chemical bonding at the interfaces. Herein, we demonstrate a new strategy of utilizing a nanocrystalline MoS2 layer as the adhesion interlayer to stabilize the Au film. The atomically thin nanocrystalline MoS2 with abundant fresh edges enhances the wetting of Au films and allows for the ultra-smoothness and a few nanometers in thickness of the Au films without interdiffusion. The resulting ultrathin Au films possess superior electrical conductivity, high optical transmittance, and eminent thermal stability, which are much better than those utilizing Cu or Ti as the adhesion layers. Moreover, these Au films can be easily transferred to arbitrary substrates. Our method provides a new benchmark in the fabrication of transferable ultrathin and thermally stable Au films.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites