Desalination technologies and their environmental impacts: A review

Saleh Almasoudi, Bassem Jamoussi
{"title":"Desalination technologies and their environmental impacts: A review","authors":"Saleh Almasoudi,&nbsp;Bassem Jamoussi","doi":"10.1016/j.scowo.2024.100002","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid increase in population growth and subsequent urbanization and industrialization has led to a global water demand. Hence, due to the challenges associated with accessing fresh water, desalination is increasingly being adopted to meet the global water demand. About 61% of the world's desalination capacity is made up of seawater desalination, whilst 30% is made up of brackish water desalination. Half of the world's desalination capacity is accounted for by membrane desalination, which mostly uses reverse osmosis desalination. The remaining half is primarily utilized for thermal desalination, which uses multi-stage flash distillation and multi-effect distillation. Although desalination plays an indisputable role in providing a steady supply of water in regions where freshwater resources are limited, it has diverse effects on the environment. Depending on the type of feed-water used, the desalination method employed, and how waste brine is managed, the desalination process has distinct and variable environmental consequences. The aim of this review was to provide comprehensive information on desalination technologies and their environmental impacts. To achieve this, the current global water demand and desalination production capacity were analyzed. This review contains important information for understanding and choosing environmentally friendly desalination technologies for the provision of a sustainable and environmentally friendly water supply.</p></div>","PeriodicalId":101197,"journal":{"name":"Sustainable Chemistry One World","volume":"1 ","pages":"Article 100002"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950357424000027/pdfft?md5=8812c23df4894ccd70ceefad8047c6ad&pid=1-s2.0-S2950357424000027-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry One World","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950357424000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid increase in population growth and subsequent urbanization and industrialization has led to a global water demand. Hence, due to the challenges associated with accessing fresh water, desalination is increasingly being adopted to meet the global water demand. About 61% of the world's desalination capacity is made up of seawater desalination, whilst 30% is made up of brackish water desalination. Half of the world's desalination capacity is accounted for by membrane desalination, which mostly uses reverse osmosis desalination. The remaining half is primarily utilized for thermal desalination, which uses multi-stage flash distillation and multi-effect distillation. Although desalination plays an indisputable role in providing a steady supply of water in regions where freshwater resources are limited, it has diverse effects on the environment. Depending on the type of feed-water used, the desalination method employed, and how waste brine is managed, the desalination process has distinct and variable environmental consequences. The aim of this review was to provide comprehensive information on desalination technologies and their environmental impacts. To achieve this, the current global water demand and desalination production capacity were analyzed. This review contains important information for understanding and choosing environmentally friendly desalination technologies for the provision of a sustainable and environmentally friendly water supply.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海水淡化技术及其对环境的影响:综述
人口的快速增长以及随之而来的城市化和工业化导致了全球对水的需求。因此,由于淡水获取方面的挑战,人们越来越多地采用海水淡化来满足全球用水需求。全球约 61% 的海水淡化能力来自海水淡化,30% 来自咸水淡化。膜法海水淡化占全球海水淡化能力的一半,主要使用反渗透海水淡化。剩下的一半主要用于热法海水淡化,即使用多级闪蒸和多效蒸馏。尽管海水淡化在为淡水资源有限的地区提供稳定的水供应方面发挥着无可争议的作用,但它对环境的影响却多种多样。根据所使用的给水类型、所采用的海水淡化方法以及废盐水的管理方式,海水淡化过程会对环境造成不同的影响。本综述旨在提供有关海水淡化技术及其环境影响的全面信息。为此,我们分析了当前全球的水需求和海水淡化生产能力。本综述包含重要信息,有助于了解和选择环境友好型海水淡化技术,以提供可持续的环境友好型供水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting total alkalinity in saline water using machine learning: A case study with RapidMiner The impact of supplemental UV-B radiation on growth and biochemical constituents in Vigna unguiculata L. Walp and Pisum sativum L. Visible light photocatalytic reduction of toxic chemical organophosphate monocrotophos using reduced graphene oxide derived from bamboo leaves Copper(II) isonicotinate metal-organic framework for reusable adsorption of salmeterol from wastewater Recent advances in green chemistry approaches for pharmaceutical synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1