Green amidation is simple and efficient for the synthesis of drugs and biomolecules. Green chemistry synthesis is always directed at achieving sustainability. Neurotoxins are critical targets for metabolic medicines to capture and eliminate from the body. Copper is a fatal brain neurotoxin. The C1-C4 probes were synthesized by reacting 3-coumarin carboxylic acid with 4-phenyl butyl amine, N-ethyl benzylamine, 4-dodecylaniline, and 3,3 - diphenyl propylamine in polar green solvent ethanol. These were tested for their metal-binding ability in environmentally safe aqueous acetonitrile with hyphenated techniques. The probes show significant binding with Cu2+ ions in the aqueous acetonitrile. The ascending order of anti-neurotoxin action is C3>C4>C2>C1 seen in the Limit of detection (Lod) values. Also, molecular mechanics (MM2) descriptors firmly point towards their use as drugs.
In this study, cerium oxide (CeO2) was synthesized using a green and eco-friendly solution combustion method with lemongrass as the fuel source. The synthesis process was simple and environmentally friendly, leveraging a straightforward reflux technique to prepare the CeO2/rGO composite. The resulting CeO2 and CeO2/rGO composite was characterized using various analytical techniques, including XRD, FE-SEM, FTIR, EDX, UV-Vis, XPS, and BET analysis. The photocatalytic performance of the CeO2/rGO composite was evaluated through the degradation of Methyl Violet (MV) dye, demonstrating a remarkable photocatalytic efficiency with approximately 99 % degradation following a first-order reaction kinetics. The half-life period (t₁/₂) of the degradation process was determined to be 19.01 minutes, and the rate constant (k) was calculated to be 0.03971 min⁻¹. The study also explored various factors affecting the photocatalytic activity, including pH levels, dye concentration, light source, and the amount of catalyst used. Additionally, scavenger studies were performed to identify the reactive species involved, and the total organic carbon (TOC) removal efficiency was evaluated. The reusability of the CeO2/rGO catalyst was also investigated, demonstrating its potential for sustainable and effective application in environmental remediation processes.
The world’s fossil fuel dependence has led to a significant increase in emissions of carbon leading to environmental pollution/degradation. To conserve our fast-dilapidating environment, the search for sustainable and clean energy sources has become a top priority. Hydrogen is adjudged to be among the most likely alternative sources of energy for a sustainable future. Amongst the several forms of hydrogen, Liquid hydrogen has attracted considerable attention as a positive option owing to its high energy density, zero-emission characteristics, and potential to be produced from renewable sources. This review explores the differences between gaseous hydrogen and liquid hydrogen, using of liquid hydrogen as an energy carrier and fuel cell, focusing on its potential to transform energy storage and transportation. This work also deals with reviews on the different liquefaction technologies applicable in the manufacture of liquid hydrogen based on efficiency.