{"title":"Cretaceous–Neogene Exhumation of the Daqing Shan, North China Constrained by Apatite Fission Track Thermochronology","authors":"","doi":"10.1007/s12583-021-1518-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The Daqing Shan (DQS) located in the Yinshan-Yanshan Orogenic Belt plays an important role in the Mesozoic to Cenozoic evolution of the North China Craton. However, the cooling and exhumation history since the Cretaceous is still controversial. Integrating the apatite fission track (AFT) data in both this study and previous works, a three-stage exhumation history from Cretaceous to Neogene of the DQS is proposed. (1) The first stage is composed of the early exhumation during Early Cretaceous driven by the collision between the North China and Siberia cratons (ca. 148–132 Ma) and the far-field effect of the subduction of the Pacific Plate (ca. 132–114 Ma). (2) Due to the subsidence of the Hetao Basin and the subsequent compensation between the DQS and the Hetao Basin, the DQS experienced the second rapid exhumation from Early Eocene to Early Oligocene (ca. 54–29 Ma). (3) Since the Late Miocene (ca. 13.5 Ma), the third rapid cooling and exhumation of the DQS occurred due to the far-field effect of the uplift of the Tibetan Plateau and the subduction of the Pacific Plate.</p>","PeriodicalId":15607,"journal":{"name":"Journal of Earth Science","volume":"197 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12583-021-1518-8","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Daqing Shan (DQS) located in the Yinshan-Yanshan Orogenic Belt plays an important role in the Mesozoic to Cenozoic evolution of the North China Craton. However, the cooling and exhumation history since the Cretaceous is still controversial. Integrating the apatite fission track (AFT) data in both this study and previous works, a three-stage exhumation history from Cretaceous to Neogene of the DQS is proposed. (1) The first stage is composed of the early exhumation during Early Cretaceous driven by the collision between the North China and Siberia cratons (ca. 148–132 Ma) and the far-field effect of the subduction of the Pacific Plate (ca. 132–114 Ma). (2) Due to the subsidence of the Hetao Basin and the subsequent compensation between the DQS and the Hetao Basin, the DQS experienced the second rapid exhumation from Early Eocene to Early Oligocene (ca. 54–29 Ma). (3) Since the Late Miocene (ca. 13.5 Ma), the third rapid cooling and exhumation of the DQS occurred due to the far-field effect of the uplift of the Tibetan Plateau and the subduction of the Pacific Plate.
期刊介绍:
Journal of Earth Science (previously known as Journal of China University of Geosciences), issued bimonthly through China University of Geosciences, covers all branches of geology and related technology in the exploration and utilization of earth resources. Founded in 1990 as the Journal of China University of Geosciences, this publication is expanding its breadth of coverage to an international scope. Coverage includes such topics as geology, petrology, mineralogy, ore deposit geology, tectonics, paleontology, stratigraphy, sedimentology, geochemistry, geophysics and environmental sciences.
Articles published in recent issues include Tectonics in the Northwestern West Philippine Basin; Creep Damage Characteristics of Soft Rock under Disturbance Loads; Simplicial Indicator Kriging; Tephra Discovered in High Resolution Peat Sediment and Its Indication to Climatic Event.
The journal offers discussion of new theories, methods and discoveries; reports on recent achievements in the geosciences; and timely reviews of selected subjects.