Tracing Sources of Geochemical Anomalies in a Deeply Buried Volcanic-Related Hydrothermal Uranium Deposit: the Daguanchang Deposit, Northern Hebei Province, North China Craton
{"title":"Tracing Sources of Geochemical Anomalies in a Deeply Buried Volcanic-Related Hydrothermal Uranium Deposit: the Daguanchang Deposit, Northern Hebei Province, North China Craton","authors":"Yangyang Zhang, Yuelong Chen, Dapeng Li, Huan Kang, Mingliang Fang, Yunliang Xu","doi":"10.1007/s12583-021-1597-6","DOIUrl":null,"url":null,"abstract":"<p>Radon (Rn) and helium (He) gases from uranium decay form distinct anomalies related to buried uranium deposits. In order to trace the geochemical anomalous sources from the volcanic-related uranium deposits in deeply buried areas, systematical Rn contents and He isotope ratios were analyzed from the Daguanchang uranium deposit. The soil gas Rn concentrations above the deep uranium are ten times higher than those in barren areas, indicating that instantaneous Rn content measurements can be used to detect deeply buried uranium. The helium isotope ratios (<sup>3</sup>He/<sup>4</sup>He) of the unmineralized samples from the mineralized drill hole (ZK1) are relatively lower and uniform compared to those of the samples from no-mineral drill hole (ZK2). However, the Th and U contents of the drill core samples from ZK1 are slightly lower than those of the samples from ZK2, indicating that the lower <sup>3</sup>He/<sup>4</sup>He ratios in ZK1 are most likely due to the addition of <sup>4</sup>He from underlying uranium intervals. The differences in the instantaneous Rn contents are consistent with the variations in the He isotope ratios of the drill core samples. These results demonstrate that soil gas Rn and <sup>3</sup>He/<sup>4</sup>He ratios are useful tracers and can indicate the existence of deeply buried volcanic-related hydrothermal uranium ores.</p>","PeriodicalId":15607,"journal":{"name":"Journal of Earth Science","volume":"27 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12583-021-1597-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Radon (Rn) and helium (He) gases from uranium decay form distinct anomalies related to buried uranium deposits. In order to trace the geochemical anomalous sources from the volcanic-related uranium deposits in deeply buried areas, systematical Rn contents and He isotope ratios were analyzed from the Daguanchang uranium deposit. The soil gas Rn concentrations above the deep uranium are ten times higher than those in barren areas, indicating that instantaneous Rn content measurements can be used to detect deeply buried uranium. The helium isotope ratios (3He/4He) of the unmineralized samples from the mineralized drill hole (ZK1) are relatively lower and uniform compared to those of the samples from no-mineral drill hole (ZK2). However, the Th and U contents of the drill core samples from ZK1 are slightly lower than those of the samples from ZK2, indicating that the lower 3He/4He ratios in ZK1 are most likely due to the addition of 4He from underlying uranium intervals. The differences in the instantaneous Rn contents are consistent with the variations in the He isotope ratios of the drill core samples. These results demonstrate that soil gas Rn and 3He/4He ratios are useful tracers and can indicate the existence of deeply buried volcanic-related hydrothermal uranium ores.
期刊介绍:
Journal of Earth Science (previously known as Journal of China University of Geosciences), issued bimonthly through China University of Geosciences, covers all branches of geology and related technology in the exploration and utilization of earth resources. Founded in 1990 as the Journal of China University of Geosciences, this publication is expanding its breadth of coverage to an international scope. Coverage includes such topics as geology, petrology, mineralogy, ore deposit geology, tectonics, paleontology, stratigraphy, sedimentology, geochemistry, geophysics and environmental sciences.
Articles published in recent issues include Tectonics in the Northwestern West Philippine Basin; Creep Damage Characteristics of Soft Rock under Disturbance Loads; Simplicial Indicator Kriging; Tephra Discovered in High Resolution Peat Sediment and Its Indication to Climatic Event.
The journal offers discussion of new theories, methods and discoveries; reports on recent achievements in the geosciences; and timely reviews of selected subjects.