Stability assessment of tree ring growth of Pinus armandii Franch in response to climate change based on slope directions at the Lubanling in the Funiu Mountains, China
Jinkuan Li, Jianfeng Peng, Xiaoxu Wei, Meng Peng, Xuan Li, Yameng Liu, Jiaxin Li
{"title":"Stability assessment of tree ring growth of Pinus armandii Franch in response to climate change based on slope directions at the Lubanling in the Funiu Mountains, China","authors":"Jinkuan Li, Jianfeng Peng, Xiaoxu Wei, Meng Peng, Xuan Li, Yameng Liu, Jiaxin Li","doi":"10.1007/s11676-024-01698-7","DOIUrl":null,"url":null,"abstract":"<p>Global warming will affect growth strategies and how trees will adapt. To compare the response of tree radial growth to climate warming in different slope directions, samples of <i>Pinus armandii</i> Franch were collected and tree-ring chronologies developed on northern and western slopes from the Lubanling in the Funiu Mountains. Correlation analyses showed that two chronologies were mainly limited by temperatures in the previous June–August and the combination of temperatures and moisture in the current May–July. The difference of the climate response to slopes was small but not negligible. Radial growth of the LBL01 site on the northern slope was affected by the combined maximum and minimum temperatures, while that of the LBL02 site was affected by maximum temperatures. With regards to moisture, radial growth of the trees on the north slope was influenced by the relative humidity in the current May–July, while on the western slope, it was affected by the relative humidity in the previous June–August, the current May–July and the precipitation in the current May–July. With the change in climate, the effects of the main limiting factors on growth on different slopes were visible to a certain extent, but the differences in response of trees on different slopes gradually decreased, which might be caused by factors such as different slope directions and the change in diurnal temperature range. These results may provide information for forest protection and ecological construction in this region, and a scientific reference for future climate reconstruction.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"216 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forestry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11676-024-01698-7","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Global warming will affect growth strategies and how trees will adapt. To compare the response of tree radial growth to climate warming in different slope directions, samples of Pinus armandii Franch were collected and tree-ring chronologies developed on northern and western slopes from the Lubanling in the Funiu Mountains. Correlation analyses showed that two chronologies were mainly limited by temperatures in the previous June–August and the combination of temperatures and moisture in the current May–July. The difference of the climate response to slopes was small but not negligible. Radial growth of the LBL01 site on the northern slope was affected by the combined maximum and minimum temperatures, while that of the LBL02 site was affected by maximum temperatures. With regards to moisture, radial growth of the trees on the north slope was influenced by the relative humidity in the current May–July, while on the western slope, it was affected by the relative humidity in the previous June–August, the current May–July and the precipitation in the current May–July. With the change in climate, the effects of the main limiting factors on growth on different slopes were visible to a certain extent, but the differences in response of trees on different slopes gradually decreased, which might be caused by factors such as different slope directions and the change in diurnal temperature range. These results may provide information for forest protection and ecological construction in this region, and a scientific reference for future climate reconstruction.
期刊介绍:
The Journal of Forestry Research (JFR), founded in 1990, is a peer-reviewed quarterly journal in English. JFR has rapidly emerged as an international journal published by Northeast Forestry University and Ecological Society of China in collaboration with Springer Verlag. The journal publishes scientific articles related to forestry for a broad range of international scientists, forest managers and practitioners.The scope of the journal covers the following five thematic categories and 20 subjects:
Basic Science of Forestry,
Forest biometrics,
Forest soils,
Forest hydrology,
Tree physiology,
Forest biomass, carbon, and bioenergy,
Forest biotechnology and molecular biology,
Forest Ecology,
Forest ecology,
Forest ecological services,
Restoration ecology,
Forest adaptation to climate change,
Wildlife ecology and management,
Silviculture and Forest Management,
Forest genetics and tree breeding,
Silviculture,
Forest RS, GIS, and modeling,
Forest management,
Forest Protection,
Forest entomology and pathology,
Forest fire,
Forest resources conservation,
Forest health monitoring and assessment,
Wood Science and Technology,
Wood Science and Technology.