Expressive mortality models through Gaussian process kernels

Jimmy Risk, Mike Ludkovski
{"title":"Expressive mortality models through Gaussian process kernels","authors":"Jimmy Risk, Mike Ludkovski","doi":"10.1017/asb.2023.39","DOIUrl":null,"url":null,"abstract":"We develop a flexible Gaussian process (GP) framework for learning the covariance structure of Age- and Year-specific mortality surfaces. Utilizing the additive and multiplicative structure of GP kernels, we design a genetic programming algorithm to search for the most expressive kernel for a given population. Our compositional search builds off the Age–Period–Cohort (APC) paradigm to construct a covariance prior best matching the spatio-temporal dynamics of a mortality dataset. We apply the resulting genetic algorithm (GA) on synthetic case studies to validate the ability of the GA to recover APC structure and on real-life national-level datasets from the Human Mortality Database. Our machine learning-based analysis provides novel insight into the presence/absence of Cohort effects in different populations and into the relative smoothness of mortality surfaces along the Age and Year dimensions. Our modeling work is done with the PyTorch libraries in Python and provides an in-depth investigation of employing GA to aid in compositional kernel search for GP surrogates.","PeriodicalId":501189,"journal":{"name":"ASTIN Bulletin: The Journal of the IAA","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin: The Journal of the IAA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/asb.2023.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a flexible Gaussian process (GP) framework for learning the covariance structure of Age- and Year-specific mortality surfaces. Utilizing the additive and multiplicative structure of GP kernels, we design a genetic programming algorithm to search for the most expressive kernel for a given population. Our compositional search builds off the Age–Period–Cohort (APC) paradigm to construct a covariance prior best matching the spatio-temporal dynamics of a mortality dataset. We apply the resulting genetic algorithm (GA) on synthetic case studies to validate the ability of the GA to recover APC structure and on real-life national-level datasets from the Human Mortality Database. Our machine learning-based analysis provides novel insight into the presence/absence of Cohort effects in different populations and into the relative smoothness of mortality surfaces along the Age and Year dimensions. Our modeling work is done with the PyTorch libraries in Python and provides an in-depth investigation of employing GA to aid in compositional kernel search for GP surrogates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过高斯过程核建立具有表现力的死亡率模型
我们开发了一个灵活的高斯过程(GP)框架,用于学习特定年龄和年份死亡率表面的协方差结构。利用 GP 内核的加法和乘法结构,我们设计了一种遗传编程算法,为给定人群搜索最具表现力的内核。我们的组成搜索建立在年龄-时期-队列(APC)范式的基础上,以构建最符合死亡率数据集时空动态的协方差先验。我们将由此产生的遗传算法(GA)应用于合成案例研究,以验证遗传算法恢复 APC 结构的能力,并应用于人类死亡率数据库中的真实国家级数据集。我们基于机器学习的分析对不同人群中是否存在队列效应以及死亡率表面在年龄和年份维度上的相对平滑性提供了新的见解。我们的建模工作是通过 Python 中的 PyTorch 库完成的,并深入研究了如何利用 GA 来帮助 GP 代理的组成核搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of correlation between interest rates and mortality rates on the valuation of various life insurance products Generic framework for a coherent integration of experience and exposure rating in reinsurance Strategic underreporting and optimal deductible insurance Multidimensional credibility: A new approach based on joint distribution function Machine Learning with High-Cardinality Categorical Features in Actuarial Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1